3.8.21 \(\int \frac {1}{(-1+x) \sqrt {-\sqrt {x}+x}} \, dx\)

Optimal. Leaf size=56 \[ \sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {x-\sqrt {x}}}{\sqrt {2} \sqrt {x}}\right )-\frac {2 \sqrt {x-\sqrt {x}}}{\sqrt {x}-1} \]

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 79, normalized size of antiderivative = 1.41, number of steps used = 6, number of rules used = 6, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.316, Rules used = {2056, 1549, 848, 94, 93, 206} \begin {gather*} \frac {\sqrt {2} \sqrt {\sqrt {x}-1} \sqrt [4]{x} \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{x}}{\sqrt {\sqrt {x}-1}}\right )}{\sqrt {x-\sqrt {x}}}-\frac {2 \sqrt {x}}{\sqrt {x-\sqrt {x}}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/((-1 + x)*Sqrt[-Sqrt[x] + x]),x]

[Out]

(-2*Sqrt[x])/Sqrt[-Sqrt[x] + x] + (Sqrt[2]*Sqrt[-1 + Sqrt[x]]*x^(1/4)*ArcTanh[(Sqrt[2]*x^(1/4))/Sqrt[-1 + Sqrt
[x]]])/Sqrt[-Sqrt[x] + x]

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 94

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/((m + 1)*(b*e - a*f)), x] - Dist[(n*(d*e - c*f))/((m + 1)*(b*e - a*
f)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[
m + n + p + 2, 0] && GtQ[n, 0] &&  !(SumSimplerQ[p, 1] &&  !SumSimplerQ[m, 1])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 848

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[(d + e*x)
^(m + p)*(f + g*x)^n*(a/d + (c*x)/e)^p, x] /; FreeQ[{a, c, d, e, f, g, m, n}, x] && NeQ[e*f - d*g, 0] && EqQ[c
*d^2 + a*e^2, 0] && (IntegerQ[p] || (GtQ[a, 0] && GtQ[d, 0] && EqQ[m + p, 0]))

Rule 1549

Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.))^(p_)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :> With[{g = Denomina
tor[n]}, Dist[g, Subst[Int[x^(g*(m + 1) - 1)*(d + e*x^(g*n))^q*(a + c*x^(2*g*n))^p, x], x, x^(1/g)], x]] /; Fr
eeQ[{a, c, d, e, m, p, q}, x] && EqQ[n2, 2*n] && FractionQ[n]

Rule 2056

Int[(u_.)*(P_)^(p_.), x_Symbol] :> With[{m = MinimumMonomialExponent[P, x]}, Dist[P^FracPart[p]/(x^(m*FracPart
[p])*Distrib[1/x^m, P]^FracPart[p]), Int[u*x^(m*p)*Distrib[1/x^m, P]^p, x], x]] /; FreeQ[p, x] &&  !IntegerQ[p
] && SumQ[P] && EveryQ[BinomialQ[#1, x] & , P] &&  !PolyQ[P, x, 2]

Rubi steps

\begin {align*} \int \frac {1}{(-1+x) \sqrt {-\sqrt {x}+x}} \, dx &=\frac {\left (\sqrt {-1+\sqrt {x}} \sqrt [4]{x}\right ) \int \frac {1}{\sqrt {-1+\sqrt {x}} (-1+x) \sqrt [4]{x}} \, dx}{\sqrt {-\sqrt {x}+x}}\\ &=\frac {\left (2 \sqrt {-1+\sqrt {x}} \sqrt [4]{x}\right ) \operatorname {Subst}\left (\int \frac {\sqrt {x}}{\sqrt {-1+x} \left (-1+x^2\right )} \, dx,x,\sqrt {x}\right )}{\sqrt {-\sqrt {x}+x}}\\ &=\frac {\left (2 \sqrt {-1+\sqrt {x}} \sqrt [4]{x}\right ) \operatorname {Subst}\left (\int \frac {\sqrt {x}}{(-1+x)^{3/2} (1+x)} \, dx,x,\sqrt {x}\right )}{\sqrt {-\sqrt {x}+x}}\\ &=-\frac {2 \sqrt {x}}{\sqrt {-\sqrt {x}+x}}+\frac {\left (\sqrt {-1+\sqrt {x}} \sqrt [4]{x}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {-1+x} \sqrt {x} (1+x)} \, dx,x,\sqrt {x}\right )}{\sqrt {-\sqrt {x}+x}}\\ &=-\frac {2 \sqrt {x}}{\sqrt {-\sqrt {x}+x}}+\frac {\left (2 \sqrt {-1+\sqrt {x}} \sqrt [4]{x}\right ) \operatorname {Subst}\left (\int \frac {1}{1-2 x^2} \, dx,x,\frac {\sqrt [4]{x}}{\sqrt {-1+\sqrt {x}}}\right )}{\sqrt {-\sqrt {x}+x}}\\ &=-\frac {2 \sqrt {x}}{\sqrt {-\sqrt {x}+x}}+\frac {\sqrt {2} \sqrt {-1+\sqrt {x}} \sqrt [4]{x} \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{x}}{\sqrt {-1+\sqrt {x}}}\right )}{\sqrt {-\sqrt {x}+x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.06, size = 67, normalized size = 1.20 \begin {gather*} \frac {\sqrt {2} \sqrt {\sqrt {x}-1} \sqrt [4]{x} \tanh ^{-1}\left (\frac {\sqrt {\sqrt {x}-1}}{\sqrt {2} \sqrt [4]{x}}\right )-2 \sqrt {x}}{\sqrt {x-\sqrt {x}}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/((-1 + x)*Sqrt[-Sqrt[x] + x]),x]

[Out]

(-2*Sqrt[x] + Sqrt[2]*Sqrt[-1 + Sqrt[x]]*x^(1/4)*ArcTanh[Sqrt[-1 + Sqrt[x]]/(Sqrt[2]*x^(1/4))])/Sqrt[-Sqrt[x]
+ x]

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.21, size = 60, normalized size = 1.07 \begin {gather*} -\frac {2 \sqrt {-\sqrt {x}+x}}{-1+\sqrt {x}}+\sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {-\sqrt {x}+x}}{-1+\sqrt {x}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[1/((-1 + x)*Sqrt[-Sqrt[x] + x]),x]

[Out]

(-2*Sqrt[-Sqrt[x] + x])/(-1 + Sqrt[x]) + Sqrt[2]*ArcTanh[(Sqrt[2]*Sqrt[-Sqrt[x] + x])/(-1 + Sqrt[x])]

________________________________________________________________________________________

fricas [B]  time = 2.05, size = 98, normalized size = 1.75 \begin {gather*} \frac {\sqrt {2} {\left (x - 1\right )} \log \left (-\frac {17 \, x^{2} + 4 \, {\left (\sqrt {2} {\left (3 \, x + 5\right )} \sqrt {x} - \sqrt {2} {\left (7 \, x + 1\right )}\right )} \sqrt {x - \sqrt {x}} - 16 \, {\left (3 \, x + 1\right )} \sqrt {x} + 46 \, x + 1}{x^{2} - 2 \, x + 1}\right ) - 8 \, \sqrt {x - \sqrt {x}} {\left (\sqrt {x} + 1\right )}}{4 \, {\left (x - 1\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-1+x)/(-x^(1/2)+x)^(1/2),x, algorithm="fricas")

[Out]

1/4*(sqrt(2)*(x - 1)*log(-(17*x^2 + 4*(sqrt(2)*(3*x + 5)*sqrt(x) - sqrt(2)*(7*x + 1))*sqrt(x - sqrt(x)) - 16*(
3*x + 1)*sqrt(x) + 46*x + 1)/(x^2 - 2*x + 1)) - 8*sqrt(x - sqrt(x))*(sqrt(x) + 1))/(x - 1)

________________________________________________________________________________________

giac [A]  time = 0.51, size = 74, normalized size = 1.32 \begin {gather*} \frac {1}{2} \, \sqrt {2} \log \left (\frac {2 \, {\left (\sqrt {2} - \sqrt {x - \sqrt {x}} + \sqrt {x} + 1\right )}}{{\left | 2 \, \sqrt {2} + 2 \, \sqrt {x - \sqrt {x}} - 2 \, \sqrt {x} - 2 \right |}}\right ) - \frac {2}{\sqrt {x - \sqrt {x}} - \sqrt {x} + 1} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-1+x)/(-x^(1/2)+x)^(1/2),x, algorithm="giac")

[Out]

1/2*sqrt(2)*log(2*(sqrt(2) - sqrt(x - sqrt(x)) + sqrt(x) + 1)/abs(2*sqrt(2) + 2*sqrt(x - sqrt(x)) - 2*sqrt(x)
- 2)) - 2/(sqrt(x - sqrt(x)) - sqrt(x) + 1)

________________________________________________________________________________________

maple [A]  time = 0.11, size = 59, normalized size = 1.05

method result size
derivativedivides \(-\frac {\sqrt {2}\, \arctanh \left (\frac {\left (1-3 \sqrt {x}\right ) \sqrt {2}}{4 \sqrt {\left (1+\sqrt {x}\right )^{2}-3 \sqrt {x}-1}}\right )}{2}-\frac {2 \sqrt {\left (-1+\sqrt {x}\right )^{2}+\sqrt {x}-1}}{-1+\sqrt {x}}\) \(59\)
default \(-\frac {\sqrt {-\sqrt {x}+x}\, \left (2 \sqrt {2}\, \sqrt {x}\, \arctanh \left (\frac {\left (-1+3 \sqrt {x}\right ) \sqrt {2}}{4 \sqrt {-\sqrt {x}+x}}\right )-\sqrt {2}\, x \arctanh \left (\frac {\left (-1+3 \sqrt {x}\right ) \sqrt {2}}{4 \sqrt {-\sqrt {x}+x}}\right )+4 \left (-\sqrt {x}+x \right )^{\frac {3}{2}}-\sqrt {2}\, \arctanh \left (\frac {\left (-1+3 \sqrt {x}\right ) \sqrt {2}}{4 \sqrt {-\sqrt {x}+x}}\right )+8 \sqrt {-\sqrt {x}+x}\, \sqrt {x}-4 \sqrt {-\sqrt {x}+x}\, x -4 \sqrt {-\sqrt {x}+x}\right )}{2 \sqrt {\sqrt {x}\, \left (-1+\sqrt {x}\right )}\, \left (-1+\sqrt {x}\right )^{2}}\) \(164\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(-1+x)/(-x^(1/2)+x)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/2*2^(1/2)*arctanh(1/4*(1-3*x^(1/2))*2^(1/2)/((1+x^(1/2))^2-3*x^(1/2)-1)^(1/2))-2/(-1+x^(1/2))*((-1+x^(1/2))
^2+x^(1/2)-1)^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {x - \sqrt {x}} {\left (x - 1\right )}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-1+x)/(-x^(1/2)+x)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(x - sqrt(x))*(x - 1)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \int \frac {1}{\sqrt {x-\sqrt {x}}\,\left (x-1\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((x - x^(1/2))^(1/2)*(x - 1)),x)

[Out]

int(1/((x - x^(1/2))^(1/2)*(x - 1)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {- \sqrt {x} + x} \left (x - 1\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-1+x)/(-x**(1/2)+x)**(1/2),x)

[Out]

Integral(1/(sqrt(-sqrt(x) + x)*(x - 1)), x)

________________________________________________________________________________________