3.6.76 \(\int \frac {\sqrt {x^2+\sqrt {1+x^4}}}{\sqrt {1+x^4}} \, dx\)

Optimal. Leaf size=44 \[ \frac {\log \left (\sqrt {x^4+1}+x^2+\sqrt {2} \sqrt {\sqrt {x^4+1}+x^2} x\right )}{\sqrt {2}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 31, normalized size of antiderivative = 0.70, number of steps used = 2, number of rules used = 2, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.074, Rules used = {2132, 206} \begin {gather*} \frac {\tanh ^{-1}\left (\frac {\sqrt {2} x}{\sqrt {\sqrt {x^4+1}+x^2}}\right )}{\sqrt {2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[x^2 + Sqrt[1 + x^4]]/Sqrt[1 + x^4],x]

[Out]

ArcTanh[(Sqrt[2]*x)/Sqrt[x^2 + Sqrt[1 + x^4]]]/Sqrt[2]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2132

Int[Sqrt[(c_.)*(x_)^2 + (d_.)*Sqrt[(a_) + (b_.)*(x_)^4]]/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Dist[d, Subst
[Int[1/(1 - 2*c*x^2), x], x, x/Sqrt[c*x^2 + d*Sqrt[a + b*x^4]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[c^2 - b*d
^2, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {x^2+\sqrt {1+x^4}}}{\sqrt {1+x^4}} \, dx &=\operatorname {Subst}\left (\int \frac {1}{1-2 x^2} \, dx,x,\frac {x}{\sqrt {x^2+\sqrt {1+x^4}}}\right )\\ &=\frac {\tanh ^{-1}\left (\frac {\sqrt {2} x}{\sqrt {x^2+\sqrt {1+x^4}}}\right )}{\sqrt {2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 31, normalized size = 0.70 \begin {gather*} \frac {\tanh ^{-1}\left (\frac {\sqrt {2} x}{\sqrt {\sqrt {x^4+1}+x^2}}\right )}{\sqrt {2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[x^2 + Sqrt[1 + x^4]]/Sqrt[1 + x^4],x]

[Out]

ArcTanh[(Sqrt[2]*x)/Sqrt[x^2 + Sqrt[1 + x^4]]]/Sqrt[2]

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.18, size = 44, normalized size = 1.00 \begin {gather*} \frac {\log \left (x^2+\sqrt {1+x^4}+\sqrt {2} x \sqrt {x^2+\sqrt {1+x^4}}\right )}{\sqrt {2}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[Sqrt[x^2 + Sqrt[1 + x^4]]/Sqrt[1 + x^4],x]

[Out]

Log[x^2 + Sqrt[1 + x^4] + Sqrt[2]*x*Sqrt[x^2 + Sqrt[1 + x^4]]]/Sqrt[2]

________________________________________________________________________________________

fricas [A]  time = 0.82, size = 60, normalized size = 1.36 \begin {gather*} \frac {1}{4} \, \sqrt {2} \log \left (4 \, x^{4} + 4 \, \sqrt {x^{4} + 1} x^{2} + 2 \, {\left (\sqrt {2} x^{3} + \sqrt {2} \sqrt {x^{4} + 1} x\right )} \sqrt {x^{2} + \sqrt {x^{4} + 1}} + 1\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2+(x^4+1)^(1/2))^(1/2)/(x^4+1)^(1/2),x, algorithm="fricas")

[Out]

1/4*sqrt(2)*log(4*x^4 + 4*sqrt(x^4 + 1)*x^2 + 2*(sqrt(2)*x^3 + sqrt(2)*sqrt(x^4 + 1)*x)*sqrt(x^2 + sqrt(x^4 +
1)) + 1)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {x^{2} + \sqrt {x^{4} + 1}}}{\sqrt {x^{4} + 1}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2+(x^4+1)^(1/2))^(1/2)/(x^4+1)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(x^2 + sqrt(x^4 + 1))/sqrt(x^4 + 1), x)

________________________________________________________________________________________

maple [F]  time = 0.02, size = 0, normalized size = 0.00 \[\int \frac {\sqrt {x^{2}+\sqrt {x^{4}+1}}}{\sqrt {x^{4}+1}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2+(x^4+1)^(1/2))^(1/2)/(x^4+1)^(1/2),x)

[Out]

int((x^2+(x^4+1)^(1/2))^(1/2)/(x^4+1)^(1/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {x^{2} + \sqrt {x^{4} + 1}}}{\sqrt {x^{4} + 1}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2+(x^4+1)^(1/2))^(1/2)/(x^4+1)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(x^2 + sqrt(x^4 + 1))/sqrt(x^4 + 1), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \int \frac {\sqrt {\sqrt {x^4+1}+x^2}}{\sqrt {x^4+1}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((x^4 + 1)^(1/2) + x^2)^(1/2)/(x^4 + 1)^(1/2),x)

[Out]

int(((x^4 + 1)^(1/2) + x^2)^(1/2)/(x^4 + 1)^(1/2), x)

________________________________________________________________________________________

sympy [A]  time = 0.99, size = 15, normalized size = 0.34 \begin {gather*} \frac {{G_{3, 3}^{2, 2}\left (\begin {matrix} 1, 1 & \frac {1}{2} \\\frac {1}{4}, \frac {3}{4} & 0 \end {matrix} \middle | {x^{4}} \right )}}{4 \sqrt {\pi }} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x**2+(x**4+1)**(1/2))**(1/2)/(x**4+1)**(1/2),x)

[Out]

meijerg(((1, 1), (1/2,)), ((1/4, 3/4), (0,)), x**4)/(4*sqrt(pi))

________________________________________________________________________________________