3.6.40 \(\int \frac {(1+x^3) \sqrt {-1+x^6}}{x^7 (-1+x^3)} \, dx\)

Optimal. Leaf size=42 \[ \frac {\left (4 x^3+1\right ) \sqrt {x^6-1}}{6 x^6}-\tan ^{-1}\left (\frac {x^3+1}{\sqrt {x^6-1}}\right ) \]

________________________________________________________________________________________

Rubi [F]  time = 0.63, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (1+x^3\right ) \sqrt {-1+x^6}}{x^7 \left (-1+x^3\right )} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Int[((1 + x^3)*Sqrt[-1 + x^6])/(x^7*(-1 + x^3)),x]

[Out]

(-2*Sqrt[-1 + x^6])/3 + Sqrt[-1 + x^6]/(6*x^6) + (2*Sqrt[-1 + x^6])/(3*x^3) + ArcTan[Sqrt[-1 + x^6]]/2 - (2*Ar
cTanh[x^3/Sqrt[-1 + x^6]])/3 + (2*Defer[Int][Sqrt[-1 + x^6]/(-1 + x), x])/3 + (4*Defer[Int][Sqrt[-1 + x^6]/(1
- I*Sqrt[3] + 2*x), x])/3 + (4*Defer[Int][Sqrt[-1 + x^6]/(1 + I*Sqrt[3] + 2*x), x])/3

Rubi steps

\begin {align*} \int \frac {\left (1+x^3\right ) \sqrt {-1+x^6}}{x^7 \left (-1+x^3\right )} \, dx &=\int \left (\frac {2 \sqrt {-1+x^6}}{3 (-1+x)}-\frac {\sqrt {-1+x^6}}{x^7}-\frac {2 \sqrt {-1+x^6}}{x^4}-\frac {2 \sqrt {-1+x^6}}{x}+\frac {2 (1+2 x) \sqrt {-1+x^6}}{3 \left (1+x+x^2\right )}\right ) \, dx\\ &=\frac {2}{3} \int \frac {\sqrt {-1+x^6}}{-1+x} \, dx+\frac {2}{3} \int \frac {(1+2 x) \sqrt {-1+x^6}}{1+x+x^2} \, dx-2 \int \frac {\sqrt {-1+x^6}}{x^4} \, dx-2 \int \frac {\sqrt {-1+x^6}}{x} \, dx-\int \frac {\sqrt {-1+x^6}}{x^7} \, dx\\ &=-\left (\frac {1}{6} \operatorname {Subst}\left (\int \frac {\sqrt {-1+x}}{x^2} \, dx,x,x^6\right )\right )-\frac {1}{3} \operatorname {Subst}\left (\int \frac {\sqrt {-1+x}}{x} \, dx,x,x^6\right )+\frac {2}{3} \int \frac {\sqrt {-1+x^6}}{-1+x} \, dx+\frac {2}{3} \int \left (\frac {2 \sqrt {-1+x^6}}{1-i \sqrt {3}+2 x}+\frac {2 \sqrt {-1+x^6}}{1+i \sqrt {3}+2 x}\right ) \, dx-\frac {2}{3} \operatorname {Subst}\left (\int \frac {\sqrt {-1+x^2}}{x^2} \, dx,x,x^3\right )\\ &=-\frac {2}{3} \sqrt {-1+x^6}+\frac {\sqrt {-1+x^6}}{6 x^6}+\frac {2 \sqrt {-1+x^6}}{3 x^3}-\frac {1}{12} \operatorname {Subst}\left (\int \frac {1}{\sqrt {-1+x} x} \, dx,x,x^6\right )+\frac {1}{3} \operatorname {Subst}\left (\int \frac {1}{\sqrt {-1+x} x} \, dx,x,x^6\right )+\frac {2}{3} \int \frac {\sqrt {-1+x^6}}{-1+x} \, dx-\frac {2}{3} \operatorname {Subst}\left (\int \frac {1}{\sqrt {-1+x^2}} \, dx,x,x^3\right )+\frac {4}{3} \int \frac {\sqrt {-1+x^6}}{1-i \sqrt {3}+2 x} \, dx+\frac {4}{3} \int \frac {\sqrt {-1+x^6}}{1+i \sqrt {3}+2 x} \, dx\\ &=-\frac {2}{3} \sqrt {-1+x^6}+\frac {\sqrt {-1+x^6}}{6 x^6}+\frac {2 \sqrt {-1+x^6}}{3 x^3}-\frac {1}{6} \operatorname {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\sqrt {-1+x^6}\right )+\frac {2}{3} \int \frac {\sqrt {-1+x^6}}{-1+x} \, dx-\frac {2}{3} \operatorname {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\frac {x^3}{\sqrt {-1+x^6}}\right )+\frac {2}{3} \operatorname {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\sqrt {-1+x^6}\right )+\frac {4}{3} \int \frac {\sqrt {-1+x^6}}{1-i \sqrt {3}+2 x} \, dx+\frac {4}{3} \int \frac {\sqrt {-1+x^6}}{1+i \sqrt {3}+2 x} \, dx\\ &=-\frac {2}{3} \sqrt {-1+x^6}+\frac {\sqrt {-1+x^6}}{6 x^6}+\frac {2 \sqrt {-1+x^6}}{3 x^3}+\frac {1}{2} \tan ^{-1}\left (\sqrt {-1+x^6}\right )-\frac {2}{3} \tanh ^{-1}\left (\frac {x^3}{\sqrt {-1+x^6}}\right )+\frac {2}{3} \int \frac {\sqrt {-1+x^6}}{-1+x} \, dx+\frac {4}{3} \int \frac {\sqrt {-1+x^6}}{1-i \sqrt {3}+2 x} \, dx+\frac {4}{3} \int \frac {\sqrt {-1+x^6}}{1+i \sqrt {3}+2 x} \, dx\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.12, size = 37, normalized size = 0.88 \begin {gather*} \frac {1}{6} \left (3 \tan ^{-1}\left (\sqrt {x^6-1}\right )+\frac {\sqrt {x^6-1} \left (4 x^3+1\right )}{x^6}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((1 + x^3)*Sqrt[-1 + x^6])/(x^7*(-1 + x^3)),x]

[Out]

(((1 + 4*x^3)*Sqrt[-1 + x^6])/x^6 + 3*ArcTan[Sqrt[-1 + x^6]])/6

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.16, size = 44, normalized size = 1.05 \begin {gather*} \frac {\left (1+4 x^3\right ) \sqrt {-1+x^6}}{6 x^6}-\tan ^{-1}\left (\frac {\sqrt {-1+x^6}}{-1+x^3}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[((1 + x^3)*Sqrt[-1 + x^6])/(x^7*(-1 + x^3)),x]

[Out]

((1 + 4*x^3)*Sqrt[-1 + x^6])/(6*x^6) - ArcTan[Sqrt[-1 + x^6]/(-1 + x^3)]

________________________________________________________________________________________

fricas [A]  time = 0.66, size = 45, normalized size = 1.07 \begin {gather*} \frac {6 \, x^{6} \arctan \left (-x^{3} + \sqrt {x^{6} - 1}\right ) + 4 \, x^{6} + \sqrt {x^{6} - 1} {\left (4 \, x^{3} + 1\right )}}{6 \, x^{6}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^3+1)*(x^6-1)^(1/2)/x^7/(x^3-1),x, algorithm="fricas")

[Out]

1/6*(6*x^6*arctan(-x^3 + sqrt(x^6 - 1)) + 4*x^6 + sqrt(x^6 - 1)*(4*x^3 + 1))/x^6

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {x^{6} - 1} {\left (x^{3} + 1\right )}}{{\left (x^{3} - 1\right )} x^{7}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^3+1)*(x^6-1)^(1/2)/x^7/(x^3-1),x, algorithm="giac")

[Out]

integrate(sqrt(x^6 - 1)*(x^3 + 1)/((x^3 - 1)*x^7), x)

________________________________________________________________________________________

maple [A]  time = 0.33, size = 35, normalized size = 0.83

method result size
risch \(\frac {4 x^{9}+x^{6}-4 x^{3}-1}{6 x^{6} \sqrt {x^{6}-1}}-\frac {\arcsin \left (\frac {1}{x^{3}}\right )}{2}\) \(35\)
trager \(\frac {\left (4 x^{3}+1\right ) \sqrt {x^{6}-1}}{6 x^{6}}-\frac {\RootOf \left (\textit {\_Z}^{2}+1\right ) \ln \left (\frac {-\RootOf \left (\textit {\_Z}^{2}+1\right )+\sqrt {x^{6}-1}}{x^{3}}\right )}{2}\) \(50\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^3+1)*(x^6-1)^(1/2)/x^7/(x^3-1),x,method=_RETURNVERBOSE)

[Out]

1/6*(4*x^9+x^6-4*x^3-1)/x^6/(x^6-1)^(1/2)-1/2*arcsin(1/x^3)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {x^{6} - 1} {\left (x^{3} + 1\right )}}{{\left (x^{3} - 1\right )} x^{7}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^3+1)*(x^6-1)^(1/2)/x^7/(x^3-1),x, algorithm="maxima")

[Out]

integrate(sqrt(x^6 - 1)*(x^3 + 1)/((x^3 - 1)*x^7), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \int \frac {\left (x^3+1\right )\,\sqrt {x^6-1}}{x^7\,\left (x^3-1\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((x^3 + 1)*(x^6 - 1)^(1/2))/(x^7*(x^3 - 1)),x)

[Out]

int(((x^3 + 1)*(x^6 - 1)^(1/2))/(x^7*(x^3 - 1)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {\left (x - 1\right ) \left (x + 1\right ) \left (x^{2} - x + 1\right ) \left (x^{2} + x + 1\right )} \left (x + 1\right ) \left (x^{2} - x + 1\right )}{x^{7} \left (x - 1\right ) \left (x^{2} + x + 1\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x**3+1)*(x**6-1)**(1/2)/x**7/(x**3-1),x)

[Out]

Integral(sqrt((x - 1)*(x + 1)*(x**2 - x + 1)*(x**2 + x + 1))*(x + 1)*(x**2 - x + 1)/(x**7*(x - 1)*(x**2 + x +
1)), x)

________________________________________________________________________________________