3.4.79 \(\int \frac {1+x}{(-1+2 x) \sqrt {x+x^4}} \, dx\)

Optimal. Leaf size=31 \[ -\frac {2}{3} \tanh ^{-1}\left (\frac {\frac {x^2}{3}+\frac {2 x}{3}+\frac {1}{3}}{\sqrt {x^4+x}}\right ) \]

________________________________________________________________________________________

Rubi [F]  time = 0.74, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1+x}{(-1+2 x) \sqrt {x+x^4}} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Int[(1 + x)/((-1 + 2*x)*Sqrt[x + x^4]),x]

[Out]

(x*(1 + x)*Sqrt[(1 - x + x^2)/(1 + (1 + Sqrt[3])*x)^2]*EllipticF[ArcCos[(1 + (1 - Sqrt[3])*x)/(1 + (1 + Sqrt[3
])*x)], (2 + Sqrt[3])/4])/(2*3^(1/4)*Sqrt[(x*(1 + x))/(1 + (1 + Sqrt[3])*x)^2]*Sqrt[x + x^4]) - (3*Sqrt[x]*Sqr
t[1 + x^3]*Defer[Subst][Defer[Int][1/((1 - Sqrt[2]*x)*Sqrt[1 + x^6]), x], x, Sqrt[x]])/(2*Sqrt[x + x^4]) - (3*
Sqrt[x]*Sqrt[1 + x^3]*Defer[Subst][Defer[Int][1/((1 + Sqrt[2]*x)*Sqrt[1 + x^6]), x], x, Sqrt[x]])/(2*Sqrt[x +
x^4])

Rubi steps

\begin {align*} \int \frac {1+x}{(-1+2 x) \sqrt {x+x^4}} \, dx &=\frac {\left (\sqrt {x} \sqrt {1+x^3}\right ) \int \frac {1+x}{\sqrt {x} (-1+2 x) \sqrt {1+x^3}} \, dx}{\sqrt {x+x^4}}\\ &=\frac {\left (2 \sqrt {x} \sqrt {1+x^3}\right ) \operatorname {Subst}\left (\int \frac {1+x^2}{\left (-1+2 x^2\right ) \sqrt {1+x^6}} \, dx,x,\sqrt {x}\right )}{\sqrt {x+x^4}}\\ &=\frac {\left (2 \sqrt {x} \sqrt {1+x^3}\right ) \operatorname {Subst}\left (\int \left (\frac {1}{2 \sqrt {1+x^6}}+\frac {3}{2 \left (-1+2 x^2\right ) \sqrt {1+x^6}}\right ) \, dx,x,\sqrt {x}\right )}{\sqrt {x+x^4}}\\ &=\frac {\left (\sqrt {x} \sqrt {1+x^3}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1+x^6}} \, dx,x,\sqrt {x}\right )}{\sqrt {x+x^4}}+\frac {\left (3 \sqrt {x} \sqrt {1+x^3}\right ) \operatorname {Subst}\left (\int \frac {1}{\left (-1+2 x^2\right ) \sqrt {1+x^6}} \, dx,x,\sqrt {x}\right )}{\sqrt {x+x^4}}\\ &=\frac {x (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\left (1+\sqrt {3}\right ) x\right )^2}} F\left (\cos ^{-1}\left (\frac {1+\left (1-\sqrt {3}\right ) x}{1+\left (1+\sqrt {3}\right ) x}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{2 \sqrt [4]{3} \sqrt {\frac {x (1+x)}{\left (1+\left (1+\sqrt {3}\right ) x\right )^2}} \sqrt {x+x^4}}+\frac {\left (3 \sqrt {x} \sqrt {1+x^3}\right ) \operatorname {Subst}\left (\int \left (-\frac {1}{2 \left (1-\sqrt {2} x\right ) \sqrt {1+x^6}}-\frac {1}{2 \left (1+\sqrt {2} x\right ) \sqrt {1+x^6}}\right ) \, dx,x,\sqrt {x}\right )}{\sqrt {x+x^4}}\\ &=\frac {x (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\left (1+\sqrt {3}\right ) x\right )^2}} F\left (\cos ^{-1}\left (\frac {1+\left (1-\sqrt {3}\right ) x}{1+\left (1+\sqrt {3}\right ) x}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{2 \sqrt [4]{3} \sqrt {\frac {x (1+x)}{\left (1+\left (1+\sqrt {3}\right ) x\right )^2}} \sqrt {x+x^4}}-\frac {\left (3 \sqrt {x} \sqrt {1+x^3}\right ) \operatorname {Subst}\left (\int \frac {1}{\left (1-\sqrt {2} x\right ) \sqrt {1+x^6}} \, dx,x,\sqrt {x}\right )}{2 \sqrt {x+x^4}}-\frac {\left (3 \sqrt {x} \sqrt {1+x^3}\right ) \operatorname {Subst}\left (\int \frac {1}{\left (1+\sqrt {2} x\right ) \sqrt {1+x^6}} \, dx,x,\sqrt {x}\right )}{2 \sqrt {x+x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 0.20, size = 69, normalized size = 2.23 \begin {gather*} -\frac {\sqrt {\frac {1}{x^3}+1} x^2 \left (\log \left (\frac {\left (\frac {1}{x}+1\right )^2}{\sqrt {\frac {1}{x^3}+1}}+3\right )-\log \left (3-\frac {\left (\frac {1}{x}+1\right )^2}{\sqrt {\frac {1}{x^3}+1}}\right )\right )}{3 \sqrt {x^4+x}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(1 + x)/((-1 + 2*x)*Sqrt[x + x^4]),x]

[Out]

-1/3*(Sqrt[1 + x^(-3)]*x^2*(-Log[3 - (1 + x^(-1))^2/Sqrt[1 + x^(-3)]] + Log[3 + (1 + x^(-1))^2/Sqrt[1 + x^(-3)
]]))/Sqrt[x + x^4]

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.96, size = 31, normalized size = 1.00 \begin {gather*} -\frac {2}{3} \tanh ^{-1}\left (\frac {\frac {1}{3}+\frac {2 x}{3}+\frac {x^2}{3}}{\sqrt {x+x^4}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(1 + x)/((-1 + 2*x)*Sqrt[x + x^4]),x]

[Out]

(-2*ArcTanh[(1/3 + (2*x)/3 + x^2/3)/Sqrt[x + x^4]])/3

________________________________________________________________________________________

fricas [B]  time = 0.51, size = 48, normalized size = 1.55 \begin {gather*} \frac {1}{3} \, \log \left (\frac {10 \, x^{3} - 6 \, x^{2} - 6 \, \sqrt {x^{4} + x} {\left (x + 1\right )} + 12 \, x + 1}{8 \, x^{3} - 12 \, x^{2} + 6 \, x - 1}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)/(-1+2*x)/(x^4+x)^(1/2),x, algorithm="fricas")

[Out]

1/3*log((10*x^3 - 6*x^2 - 6*sqrt(x^4 + x)*(x + 1) + 12*x + 1)/(8*x^3 - 12*x^2 + 6*x - 1))

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x + 1}{\sqrt {x^{4} + x} {\left (2 \, x - 1\right )}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)/(-1+2*x)/(x^4+x)^(1/2),x, algorithm="giac")

[Out]

integrate((x + 1)/(sqrt(x^4 + x)*(2*x - 1)), x)

________________________________________________________________________________________

maple [B]  time = 0.26, size = 46, normalized size = 1.48

method result size
trager \(\frac {\ln \left (\frac {-10 x^{3}+6 x \sqrt {x^{4}+x}+6 x^{2}+6 \sqrt {x^{4}+x}-12 x -1}{\left (-1+2 x \right )^{3}}\right )}{3}\) \(46\)
default \(-\frac {\left (-\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) x}{\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}\, \left (1+x \right )^{2} \sqrt {-\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{\left (\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}\, \sqrt {-\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}\, \EllipticF \left (\sqrt {\frac {\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) x}{\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}, \sqrt {\frac {\left (-\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \left (-\frac {1}{2}-\frac {i \sqrt {3}}{2}\right )}{\left (-\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right )}}\right )}{\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {x \left (1+x \right ) \left (x -\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right )}}+\frac {\left (-\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) x}{\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}\, \left (1+x \right )^{2} \sqrt {-\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{\left (\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}\, \sqrt {-\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}\, \left (\EllipticF \left (\sqrt {\frac {\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) x}{\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}, \sqrt {\frac {\left (-\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \left (-\frac {1}{2}-\frac {i \sqrt {3}}{2}\right )}{\left (-\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right )}}\right )+2 \EllipticPi \left (\sqrt {\frac {\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) x}{\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}, \frac {\frac {3}{2}+\frac {3 i \sqrt {3}}{2}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}, \sqrt {\frac {\left (-\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \left (-\frac {1}{2}-\frac {i \sqrt {3}}{2}\right )}{\left (-\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right )}}\right )\right )}{\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {x \left (1+x \right ) \left (x -\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right )}}\) \(491\)
elliptic \(-\frac {\left (-\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) x}{\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}\, \left (1+x \right )^{2} \sqrt {-\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{\left (\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}\, \sqrt {-\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}\, \EllipticF \left (\sqrt {\frac {\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) x}{\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}, \sqrt {\frac {\left (-\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \left (-\frac {1}{2}-\frac {i \sqrt {3}}{2}\right )}{\left (-\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right )}}\right )}{\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {x \left (1+x \right ) \left (x -\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right )}}+\frac {\left (-\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) x}{\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}\, \left (1+x \right )^{2} \sqrt {-\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{\left (\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}\, \sqrt {-\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}\, \left (\EllipticF \left (\sqrt {\frac {\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) x}{\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}, \sqrt {\frac {\left (-\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \left (-\frac {1}{2}-\frac {i \sqrt {3}}{2}\right )}{\left (-\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right )}}\right )+2 \EllipticPi \left (\sqrt {\frac {\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) x}{\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}, \frac {\frac {3}{2}+\frac {3 i \sqrt {3}}{2}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}, \sqrt {\frac {\left (-\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \left (-\frac {1}{2}-\frac {i \sqrt {3}}{2}\right )}{\left (-\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right )}}\right )\right )}{\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {x \left (1+x \right ) \left (x -\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right )}}\) \(491\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1+x)/(-1+2*x)/(x^4+x)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/3*ln((-10*x^3+6*x*(x^4+x)^(1/2)+6*x^2+6*(x^4+x)^(1/2)-12*x-1)/(-1+2*x)^3)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x + 1}{\sqrt {x^{4} + x} {\left (2 \, x - 1\right )}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)/(-1+2*x)/(x^4+x)^(1/2),x, algorithm="maxima")

[Out]

integrate((x + 1)/(sqrt(x^4 + x)*(2*x - 1)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {x+1}{\left (2\,x-1\right )\,\sqrt {x^4+x}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x + 1)/((2*x - 1)*(x + x^4)^(1/2)),x)

[Out]

int((x + 1)/((2*x - 1)*(x + x^4)^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x + 1}{\sqrt {x \left (x + 1\right ) \left (x^{2} - x + 1\right )} \left (2 x - 1\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)/(-1+2*x)/(x**4+x)**(1/2),x)

[Out]

Integral((x + 1)/(sqrt(x*(x + 1)*(x**2 - x + 1))*(2*x - 1)), x)

________________________________________________________________________________________