3.4.71 \(\int \frac {\sqrt {1-x^6} (1+2 x^6)}{x^2 (-1-x^2+x^6)} \, dx\)

Optimal. Leaf size=30 \[ \frac {\sqrt {1-x^6}}{x}+\tan ^{-1}\left (\frac {x}{\sqrt {1-x^6}}\right ) \]

________________________________________________________________________________________

Rubi [F]  time = 0.84, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\sqrt {1-x^6} \left (1+2 x^6\right )}{x^2 \left (-1-x^2+x^6\right )} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Int[(Sqrt[1 - x^6]*(1 + 2*x^6))/(x^2*(-1 - x^2 + x^6)),x]

[Out]

Sqrt[1 - x^6]/x + (3*(1 + Sqrt[3])*x*Sqrt[1 - x^6])/(2*(1 - (1 + Sqrt[3])*x^2)) - (3*3^(1/4)*x*(1 - x^2)*Sqrt[
(1 + x^2 + x^4)/(1 - (1 + Sqrt[3])*x^2)^2]*EllipticE[ArcCos[(1 - (1 - Sqrt[3])*x^2)/(1 - (1 + Sqrt[3])*x^2)],
(2 + Sqrt[3])/4])/(2*Sqrt[-((x^2*(1 - x^2))/(1 - (1 + Sqrt[3])*x^2)^2)]*Sqrt[1 - x^6]) - (3^(3/4)*(1 - Sqrt[3]
)*x*(1 - x^2)*Sqrt[(1 + x^2 + x^4)/(1 - (1 + Sqrt[3])*x^2)^2]*EllipticF[ArcCos[(1 - (1 - Sqrt[3])*x^2)/(1 - (1
 + Sqrt[3])*x^2)], (2 + Sqrt[3])/4])/(4*Sqrt[-((x^2*(1 - x^2))/(1 - (1 + Sqrt[3])*x^2)^2)]*Sqrt[1 - x^6]) + De
fer[Int][Sqrt[1 - x^6]/(1 + x^2 - x^6), x] + 3*Defer[Int][(x^4*Sqrt[1 - x^6])/(-1 - x^2 + x^6), x]

Rubi steps

\begin {align*} \int \frac {\sqrt {1-x^6} \left (1+2 x^6\right )}{x^2 \left (-1-x^2+x^6\right )} \, dx &=\int \left (-\frac {\sqrt {1-x^6}}{x^2}+\frac {\left (-1+3 x^4\right ) \sqrt {1-x^6}}{-1-x^2+x^6}\right ) \, dx\\ &=-\int \frac {\sqrt {1-x^6}}{x^2} \, dx+\int \frac {\left (-1+3 x^4\right ) \sqrt {1-x^6}}{-1-x^2+x^6} \, dx\\ &=\frac {\sqrt {1-x^6}}{x}+3 \int \frac {x^4}{\sqrt {1-x^6}} \, dx+\int \left (\frac {\sqrt {1-x^6}}{1+x^2-x^6}+\frac {3 x^4 \sqrt {1-x^6}}{-1-x^2+x^6}\right ) \, dx\\ &=\frac {\sqrt {1-x^6}}{x}-\frac {3}{2} \int \frac {-1+\sqrt {3}-2 x^4}{\sqrt {1-x^6}} \, dx+3 \int \frac {x^4 \sqrt {1-x^6}}{-1-x^2+x^6} \, dx-\frac {1}{2} \left (3 \left (1-\sqrt {3}\right )\right ) \int \frac {1}{\sqrt {1-x^6}} \, dx+\int \frac {\sqrt {1-x^6}}{1+x^2-x^6} \, dx\\ &=\frac {\sqrt {1-x^6}}{x}+\frac {3 \left (1+\sqrt {3}\right ) x \sqrt {1-x^6}}{2 \left (1-\left (1+\sqrt {3}\right ) x^2\right )}-\frac {3 \sqrt [4]{3} x \left (1-x^2\right ) \sqrt {\frac {1+x^2+x^4}{\left (1-\left (1+\sqrt {3}\right ) x^2\right )^2}} E\left (\cos ^{-1}\left (\frac {1-\left (1-\sqrt {3}\right ) x^2}{1-\left (1+\sqrt {3}\right ) x^2}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{2 \sqrt {-\frac {x^2 \left (1-x^2\right )}{\left (1-\left (1+\sqrt {3}\right ) x^2\right )^2}} \sqrt {1-x^6}}-\frac {3^{3/4} \left (1-\sqrt {3}\right ) x \left (1-x^2\right ) \sqrt {\frac {1+x^2+x^4}{\left (1-\left (1+\sqrt {3}\right ) x^2\right )^2}} F\left (\cos ^{-1}\left (\frac {1-\left (1-\sqrt {3}\right ) x^2}{1-\left (1+\sqrt {3}\right ) x^2}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{4 \sqrt {-\frac {x^2 \left (1-x^2\right )}{\left (1-\left (1+\sqrt {3}\right ) x^2\right )^2}} \sqrt {1-x^6}}+3 \int \frac {x^4 \sqrt {1-x^6}}{-1-x^2+x^6} \, dx+\int \frac {\sqrt {1-x^6}}{1+x^2-x^6} \, dx\\ \end {align*}

________________________________________________________________________________________

Mathematica [F]  time = 0.31, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {1-x^6} \left (1+2 x^6\right )}{x^2 \left (-1-x^2+x^6\right )} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Integrate[(Sqrt[1 - x^6]*(1 + 2*x^6))/(x^2*(-1 - x^2 + x^6)),x]

[Out]

Integrate[(Sqrt[1 - x^6]*(1 + 2*x^6))/(x^2*(-1 - x^2 + x^6)), x]

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 3.18, size = 30, normalized size = 1.00 \begin {gather*} \frac {\sqrt {1-x^6}}{x}+\tan ^{-1}\left (\frac {x}{\sqrt {1-x^6}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(Sqrt[1 - x^6]*(1 + 2*x^6))/(x^2*(-1 - x^2 + x^6)),x]

[Out]

Sqrt[1 - x^6]/x + ArcTan[x/Sqrt[1 - x^6]]

________________________________________________________________________________________

fricas [A]  time = 0.86, size = 42, normalized size = 1.40 \begin {gather*} -\frac {x \arctan \left (\frac {2 \, \sqrt {-x^{6} + 1} x}{x^{6} + x^{2} - 1}\right ) - 2 \, \sqrt {-x^{6} + 1}}{2 \, x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^6+1)^(1/2)*(2*x^6+1)/x^2/(x^6-x^2-1),x, algorithm="fricas")

[Out]

-1/2*(x*arctan(2*sqrt(-x^6 + 1)*x/(x^6 + x^2 - 1)) - 2*sqrt(-x^6 + 1))/x

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (2 \, x^{6} + 1\right )} \sqrt {-x^{6} + 1}}{{\left (x^{6} - x^{2} - 1\right )} x^{2}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^6+1)^(1/2)*(2*x^6+1)/x^2/(x^6-x^2-1),x, algorithm="giac")

[Out]

integrate((2*x^6 + 1)*sqrt(-x^6 + 1)/((x^6 - x^2 - 1)*x^2), x)

________________________________________________________________________________________

maple [C]  time = 0.90, size = 78, normalized size = 2.60

method result size
trager \(\frac {\sqrt {-x^{6}+1}}{x}-\frac {\RootOf \left (\textit {\_Z}^{2}+1\right ) \ln \left (\frac {\RootOf \left (\textit {\_Z}^{2}+1\right ) x^{6}+\RootOf \left (\textit {\_Z}^{2}+1\right ) x^{2}+2 \sqrt {-x^{6}+1}\, x -\RootOf \left (\textit {\_Z}^{2}+1\right )}{x^{6}-x^{2}-1}\right )}{2}\) \(78\)
risch \(-\frac {x^{6}-1}{x \sqrt {-x^{6}+1}}+\frac {\RootOf \left (\textit {\_Z}^{2}+1\right ) \ln \left (\frac {\RootOf \left (\textit {\_Z}^{2}+1\right ) x^{6}+\RootOf \left (\textit {\_Z}^{2}+1\right ) x^{2}-2 \sqrt {-x^{6}+1}\, x -\RootOf \left (\textit {\_Z}^{2}+1\right )}{x^{6}-x^{2}-1}\right )}{2}\) \(84\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-x^6+1)^(1/2)*(2*x^6+1)/x^2/(x^6-x^2-1),x,method=_RETURNVERBOSE)

[Out]

(-x^6+1)^(1/2)/x-1/2*RootOf(_Z^2+1)*ln((RootOf(_Z^2+1)*x^6+RootOf(_Z^2+1)*x^2+2*(-x^6+1)^(1/2)*x-RootOf(_Z^2+1
))/(x^6-x^2-1))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (2 \, x^{6} + 1\right )} \sqrt {-x^{6} + 1}}{{\left (x^{6} - x^{2} - 1\right )} x^{2}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^6+1)^(1/2)*(2*x^6+1)/x^2/(x^6-x^2-1),x, algorithm="maxima")

[Out]

integrate((2*x^6 + 1)*sqrt(-x^6 + 1)/((x^6 - x^2 - 1)*x^2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {\sqrt {1-x^6}\,\left (2\,x^6+1\right )}{x^2\,\left (-x^6+x^2+1\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-((1 - x^6)^(1/2)*(2*x^6 + 1))/(x^2*(x^2 - x^6 + 1)),x)

[Out]

int(-((1 - x^6)^(1/2)*(2*x^6 + 1))/(x^2*(x^2 - x^6 + 1)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x**6+1)**(1/2)*(2*x**6+1)/x**2/(x**6-x**2-1),x)

[Out]

Timed out

________________________________________________________________________________________