3.4.48 \(\int \frac {x^5}{\sqrt {-b+a x^3}} \, dx\)

Optimal. Leaf size=29 \[ \frac {2 \sqrt {a x^3-b} \left (a x^3+2 b\right )}{9 a^2} \]

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 42, normalized size of antiderivative = 1.45, number of steps used = 3, number of rules used = 2, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {266, 43} \begin {gather*} \frac {2 \left (a x^3-b\right )^{3/2}}{9 a^2}+\frac {2 b \sqrt {a x^3-b}}{3 a^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^5/Sqrt[-b + a*x^3],x]

[Out]

(2*b*Sqrt[-b + a*x^3])/(3*a^2) + (2*(-b + a*x^3)^(3/2))/(9*a^2)

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {x^5}{\sqrt {-b+a x^3}} \, dx &=\frac {1}{3} \operatorname {Subst}\left (\int \frac {x}{\sqrt {-b+a x}} \, dx,x,x^3\right )\\ &=\frac {1}{3} \operatorname {Subst}\left (\int \left (\frac {b}{a \sqrt {-b+a x}}+\frac {\sqrt {-b+a x}}{a}\right ) \, dx,x,x^3\right )\\ &=\frac {2 b \sqrt {-b+a x^3}}{3 a^2}+\frac {2 \left (-b+a x^3\right )^{3/2}}{9 a^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 29, normalized size = 1.00 \begin {gather*} \frac {2 \sqrt {a x^3-b} \left (a x^3+2 b\right )}{9 a^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^5/Sqrt[-b + a*x^3],x]

[Out]

(2*Sqrt[-b + a*x^3]*(2*b + a*x^3))/(9*a^2)

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.03, size = 29, normalized size = 1.00 \begin {gather*} \frac {2 \sqrt {-b+a x^3} \left (2 b+a x^3\right )}{9 a^2} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[x^5/Sqrt[-b + a*x^3],x]

[Out]

(2*Sqrt[-b + a*x^3]*(2*b + a*x^3))/(9*a^2)

________________________________________________________________________________________

fricas [A]  time = 0.45, size = 25, normalized size = 0.86 \begin {gather*} \frac {2 \, {\left (a x^{3} + 2 \, b\right )} \sqrt {a x^{3} - b}}{9 \, a^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(a*x^3-b)^(1/2),x, algorithm="fricas")

[Out]

2/9*(a*x^3 + 2*b)*sqrt(a*x^3 - b)/a^2

________________________________________________________________________________________

giac [A]  time = 0.41, size = 34, normalized size = 1.17 \begin {gather*} \frac {2 \, {\left (a x^{3} - b\right )}^{\frac {3}{2}}}{9 \, a^{2}} + \frac {2 \, \sqrt {a x^{3} - b} b}{3 \, a^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(a*x^3-b)^(1/2),x, algorithm="giac")

[Out]

2/9*(a*x^3 - b)^(3/2)/a^2 + 2/3*sqrt(a*x^3 - b)*b/a^2

________________________________________________________________________________________

maple [A]  time = 0.06, size = 26, normalized size = 0.90

method result size
gosper \(\frac {2 \sqrt {a \,x^{3}-b}\, \left (a \,x^{3}+2 b \right )}{9 a^{2}}\) \(26\)
trager \(\frac {2 \sqrt {a \,x^{3}-b}\, \left (a \,x^{3}+2 b \right )}{9 a^{2}}\) \(26\)
risch \(\frac {2 \sqrt {a \,x^{3}-b}\, \left (a \,x^{3}+2 b \right )}{9 a^{2}}\) \(26\)
default \(\frac {2 x^{3} \sqrt {a \,x^{3}-b}}{9 a}+\frac {4 b \sqrt {a \,x^{3}-b}}{9 a^{2}}\) \(38\)
elliptic \(\frac {2 x^{3} \sqrt {a \,x^{3}-b}}{9 a}+\frac {4 b \sqrt {a \,x^{3}-b}}{9 a^{2}}\) \(38\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5/(a*x^3-b)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/9*(a*x^3-b)^(1/2)*(a*x^3+2*b)/a^2

________________________________________________________________________________________

maxima [A]  time = 0.34, size = 34, normalized size = 1.17 \begin {gather*} \frac {2 \, {\left (a x^{3} - b\right )}^{\frac {3}{2}}}{9 \, a^{2}} + \frac {2 \, \sqrt {a x^{3} - b} b}{3 \, a^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(a*x^3-b)^(1/2),x, algorithm="maxima")

[Out]

2/9*(a*x^3 - b)^(3/2)/a^2 + 2/3*sqrt(a*x^3 - b)*b/a^2

________________________________________________________________________________________

mupad [B]  time = 0.40, size = 25, normalized size = 0.86 \begin {gather*} \frac {2\,\sqrt {a\,x^3-b}\,\left (a\,x^3+2\,b\right )}{9\,a^2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5/(a*x^3 - b)^(1/2),x)

[Out]

(2*(a*x^3 - b)^(1/2)*(2*b + a*x^3))/(9*a^2)

________________________________________________________________________________________

sympy [A]  time = 0.63, size = 48, normalized size = 1.66 \begin {gather*} \begin {cases} \frac {2 x^{3} \sqrt {a x^{3} - b}}{9 a} + \frac {4 b \sqrt {a x^{3} - b}}{9 a^{2}} & \text {for}\: a \neq 0 \\\frac {x^{6}}{6 \sqrt {- b}} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**5/(a*x**3-b)**(1/2),x)

[Out]

Piecewise((2*x**3*sqrt(a*x**3 - b)/(9*a) + 4*b*sqrt(a*x**3 - b)/(9*a**2), Ne(a, 0)), (x**6/(6*sqrt(-b)), True)
)

________________________________________________________________________________________