3.3.62 \(\int \frac {1+x^2}{(-1+x^2) \sqrt [3]{-x^2+x^4}} \, dx\)

Optimal. Leaf size=25 \[ -\frac {3 \left (x^4-x^2\right )^{2/3}}{x \left (x^2-1\right )} \]

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 16, normalized size of antiderivative = 0.64, number of steps used = 2, number of rules used = 2, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {2056, 449} \begin {gather*} -\frac {3 x}{\sqrt [3]{x^4-x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(1 + x^2)/((-1 + x^2)*(-x^2 + x^4)^(1/3)),x]

[Out]

(-3*x)/(-x^2 + x^4)^(1/3)

Rule 449

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(c*(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1))/(a*e*(m + 1)), x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && NeQ[b*c - a*d, 0] && EqQ[
a*d*(m + 1) - b*c*(m + n*(p + 1) + 1), 0] && NeQ[m, -1]

Rule 2056

Int[(u_.)*(P_)^(p_.), x_Symbol] :> With[{m = MinimumMonomialExponent[P, x]}, Dist[P^FracPart[p]/(x^(m*FracPart
[p])*Distrib[1/x^m, P]^FracPart[p]), Int[u*x^(m*p)*Distrib[1/x^m, P]^p, x], x]] /; FreeQ[p, x] &&  !IntegerQ[p
] && SumQ[P] && EveryQ[BinomialQ[#1, x] & , P] &&  !PolyQ[P, x, 2]

Rubi steps

\begin {align*} \int \frac {1+x^2}{\left (-1+x^2\right ) \sqrt [3]{-x^2+x^4}} \, dx &=\frac {\left (x^{2/3} \sqrt [3]{-1+x^2}\right ) \int \frac {1+x^2}{x^{2/3} \left (-1+x^2\right )^{4/3}} \, dx}{\sqrt [3]{-x^2+x^4}}\\ &=-\frac {3 x}{\sqrt [3]{-x^2+x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 16, normalized size = 0.64 \begin {gather*} -\frac {3 x}{\sqrt [3]{x^2 \left (x^2-1\right )}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(1 + x^2)/((-1 + x^2)*(-x^2 + x^4)^(1/3)),x]

[Out]

(-3*x)/(x^2*(-1 + x^2))^(1/3)

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.09, size = 25, normalized size = 1.00 \begin {gather*} -\frac {3 \left (-x^2+x^4\right )^{2/3}}{x \left (-1+x^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(1 + x^2)/((-1 + x^2)*(-x^2 + x^4)^(1/3)),x]

[Out]

(-3*(-x^2 + x^4)^(2/3))/(x*(-1 + x^2))

________________________________________________________________________________________

fricas [A]  time = 0.44, size = 22, normalized size = 0.88 \begin {gather*} -\frac {3 \, {\left (x^{4} - x^{2}\right )}^{\frac {2}{3}}}{x^{3} - x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2+1)/(x^2-1)/(x^4-x^2)^(1/3),x, algorithm="fricas")

[Out]

-3*(x^4 - x^2)^(2/3)/(x^3 - x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{2} + 1}{{\left (x^{4} - x^{2}\right )}^{\frac {1}{3}} {\left (x^{2} - 1\right )}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2+1)/(x^2-1)/(x^4-x^2)^(1/3),x, algorithm="giac")

[Out]

integrate((x^2 + 1)/((x^4 - x^2)^(1/3)*(x^2 - 1)), x)

________________________________________________________________________________________

maple [A]  time = 0.10, size = 15, normalized size = 0.60

method result size
gosper \(-\frac {3 x}{\left (x^{4}-x^{2}\right )^{\frac {1}{3}}}\) \(15\)
risch \(-\frac {3 x}{\left (x^{2} \left (x^{2}-1\right )\right )^{\frac {1}{3}}}\) \(15\)
trager \(-\frac {3 \left (x^{4}-x^{2}\right )^{\frac {2}{3}}}{x \left (x^{2}-1\right )}\) \(24\)
meijerg \(-\frac {3 \left (-\mathrm {signum}\left (x^{2}-1\right )\right )^{\frac {1}{3}} \hypergeom \left (\left [\frac {1}{6}, \frac {4}{3}\right ], \left [\frac {7}{6}\right ], x^{2}\right ) x^{\frac {1}{3}}}{\mathrm {signum}\left (x^{2}-1\right )^{\frac {1}{3}}}-\frac {3 \left (-\mathrm {signum}\left (x^{2}-1\right )\right )^{\frac {1}{3}} \hypergeom \left (\left [\frac {7}{6}, \frac {4}{3}\right ], \left [\frac {13}{6}\right ], x^{2}\right ) x^{\frac {7}{3}}}{7 \mathrm {signum}\left (x^{2}-1\right )^{\frac {1}{3}}}\) \(66\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2+1)/(x^2-1)/(x^4-x^2)^(1/3),x,method=_RETURNVERBOSE)

[Out]

-3*x/(x^4-x^2)^(1/3)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{2} + 1}{{\left (x^{4} - x^{2}\right )}^{\frac {1}{3}} {\left (x^{2} - 1\right )}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2+1)/(x^2-1)/(x^4-x^2)^(1/3),x, algorithm="maxima")

[Out]

integrate((x^2 + 1)/((x^4 - x^2)^(1/3)*(x^2 - 1)), x)

________________________________________________________________________________________

mupad [B]  time = 0.19, size = 23, normalized size = 0.92 \begin {gather*} -\frac {3\,{\left (x^4-x^2\right )}^{2/3}}{x\,\left (x^2-1\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2 + 1)/((x^2 - 1)*(x^4 - x^2)^(1/3)),x)

[Out]

-(3*(x^4 - x^2)^(2/3))/(x*(x^2 - 1))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{2} + 1}{\sqrt [3]{x^{2} \left (x - 1\right ) \left (x + 1\right )} \left (x - 1\right ) \left (x + 1\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x**2+1)/(x**2-1)/(x**4-x**2)**(1/3),x)

[Out]

Integral((x**2 + 1)/((x**2*(x - 1)*(x + 1))**(1/3)*(x - 1)*(x + 1)), x)

________________________________________________________________________________________