3.3.60 \(\int \frac {1}{x^5 \sqrt {-x+x^4}} \, dx\)

Optimal. Leaf size=25 \[ \frac {2 \left (2 x^3+1\right ) \sqrt {x^4-x}}{9 x^5} \]

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 37, normalized size of antiderivative = 1.48, number of steps used = 2, number of rules used = 2, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {2016, 2014} \begin {gather*} \frac {2 \sqrt {x^4-x}}{9 x^5}+\frac {4 \sqrt {x^4-x}}{9 x^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x^5*Sqrt[-x + x^4]),x]

[Out]

(2*Sqrt[-x + x^4])/(9*x^5) + (4*Sqrt[-x + x^4])/(9*x^2)

Rule 2014

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> -Simp[(c^(j - 1)*(c*x)^(m - j
+ 1)*(a*x^j + b*x^n)^(p + 1))/(a*(n - j)*(p + 1)), x] /; FreeQ[{a, b, c, j, m, n, p}, x] &&  !IntegerQ[p] && N
eQ[n, j] && EqQ[m + n*p + n - j + 1, 0] && (IntegerQ[j] || GtQ[c, 0])

Rule 2016

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(c^(j - 1)*(c*x)^(m - j +
 1)*(a*x^j + b*x^n)^(p + 1))/(a*(m + j*p + 1)), x] - Dist[(b*(m + n*p + n - j + 1))/(a*c^(n - j)*(m + j*p + 1)
), Int[(c*x)^(m + n - j)*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[
n, j] && ILtQ[Simplify[(m + n*p + n - j + 1)/(n - j)], 0] && NeQ[m + j*p + 1, 0] && (IntegersQ[j, n] || GtQ[c,
 0])

Rubi steps

\begin {align*} \int \frac {1}{x^5 \sqrt {-x+x^4}} \, dx &=\frac {2 \sqrt {-x+x^4}}{9 x^5}+\frac {2}{3} \int \frac {1}{x^2 \sqrt {-x+x^4}} \, dx\\ &=\frac {2 \sqrt {-x+x^4}}{9 x^5}+\frac {4 \sqrt {-x+x^4}}{9 x^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 25, normalized size = 1.00 \begin {gather*} \frac {2 \sqrt {x \left (x^3-1\right )} \left (2 x^3+1\right )}{9 x^5} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x^5*Sqrt[-x + x^4]),x]

[Out]

(2*Sqrt[x*(-1 + x^3)]*(1 + 2*x^3))/(9*x^5)

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.39, size = 25, normalized size = 1.00 \begin {gather*} \frac {2 \left (1+2 x^3\right ) \sqrt {-x+x^4}}{9 x^5} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[1/(x^5*Sqrt[-x + x^4]),x]

[Out]

(2*(1 + 2*x^3)*Sqrt[-x + x^4])/(9*x^5)

________________________________________________________________________________________

fricas [A]  time = 0.47, size = 21, normalized size = 0.84 \begin {gather*} \frac {2 \, \sqrt {x^{4} - x} {\left (2 \, x^{3} + 1\right )}}{9 \, x^{5}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^5/(x^4-x)^(1/2),x, algorithm="fricas")

[Out]

2/9*sqrt(x^4 - x)*(2*x^3 + 1)/x^5

________________________________________________________________________________________

giac [A]  time = 0.40, size = 23, normalized size = 0.92 \begin {gather*} -\frac {2}{9} \, {\left (-\frac {1}{x^{3}} + 1\right )}^{\frac {3}{2}} + \frac {2}{3} \, \sqrt {-\frac {1}{x^{3}} + 1} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^5/(x^4-x)^(1/2),x, algorithm="giac")

[Out]

-2/9*(-1/x^3 + 1)^(3/2) + 2/3*sqrt(-1/x^3 + 1)

________________________________________________________________________________________

maple [A]  time = 0.10, size = 22, normalized size = 0.88

method result size
trager \(\frac {2 \left (2 x^{3}+1\right ) \sqrt {x^{4}-x}}{9 x^{5}}\) \(22\)
risch \(\frac {-\frac {2}{9} x^{3}-\frac {2}{9}+\frac {4}{9} x^{6}}{x^{4} \sqrt {x \left (x^{3}-1\right )}}\) \(27\)
default \(\frac {2 \sqrt {x^{4}-x}}{9 x^{5}}+\frac {4 \sqrt {x^{4}-x}}{9 x^{2}}\) \(30\)
elliptic \(\frac {2 \sqrt {x^{4}-x}}{9 x^{5}}+\frac {4 \sqrt {x^{4}-x}}{9 x^{2}}\) \(30\)
gosper \(\frac {2 \left (-1+x \right ) \left (x^{2}+x +1\right ) \left (2 x^{3}+1\right )}{9 x^{4} \sqrt {x^{4}-x}}\) \(31\)
meijerg \(-\frac {2 \sqrt {-\mathrm {signum}\left (x^{3}-1\right )}\, \left (2 x^{3}+1\right ) \sqrt {-x^{3}+1}}{9 \sqrt {\mathrm {signum}\left (x^{3}-1\right )}\, x^{\frac {9}{2}}}\) \(40\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^5/(x^4-x)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/9*(2*x^3+1)*(x^4-x)^(1/2)/x^5

________________________________________________________________________________________

maxima [A]  time = 0.80, size = 32, normalized size = 1.28 \begin {gather*} \frac {2 \, {\left (2 \, x^{7} - x^{4} - x\right )}}{9 \, \sqrt {x^{2} + x + 1} \sqrt {x - 1} x^{\frac {11}{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^5/(x^4-x)^(1/2),x, algorithm="maxima")

[Out]

2/9*(2*x^7 - x^4 - x)/(sqrt(x^2 + x + 1)*sqrt(x - 1)*x^(11/2))

________________________________________________________________________________________

mupad [B]  time = 0.19, size = 21, normalized size = 0.84 \begin {gather*} \frac {2\,\sqrt {x^4-x}\,\left (2\,x^3+1\right )}{9\,x^5} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^5*(x^4 - x)^(1/2)),x)

[Out]

(2*(x^4 - x)^(1/2)*(2*x^3 + 1))/(9*x^5)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{x^{5} \sqrt {x \left (x - 1\right ) \left (x^{2} + x + 1\right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**5/(x**4-x)**(1/2),x)

[Out]

Integral(1/(x**5*sqrt(x*(x - 1)*(x**2 + x + 1))), x)

________________________________________________________________________________________