3.27.91 \(\int \frac {1}{x^4 \sqrt {b+\sqrt {b^2+a x^2}}} \, dx\)

Optimal. Leaf size=243 \[ \frac {5 a^{3/2} \tan ^{-1}\left (\frac {\sqrt {a} x}{\sqrt {2} \sqrt {b} \sqrt {\sqrt {a x^2+b^2}+b}}-\frac {\sqrt {\sqrt {a x^2+b^2}+b}}{\sqrt {2} \sqrt {b}}\right )}{32 \sqrt {2} b^{7/2}}+\frac {a^{5/2} \left (15 x^2 \sqrt {a x^2+b^2}+5 b x^2\right )+a^{3/2} \left (-8 b^2 \sqrt {a x^2+b^2}-56 b^3\right )}{\frac {384 a^{3/2} b^4 x^3 \sqrt {a x^2+b^2}}{\left (\sqrt {a x^2+b^2}+b\right )^{3/2}}+\frac {192 a^{3/2} b^3 x^3 \left (a x^2+2 b^2\right )}{\left (\sqrt {a x^2+b^2}+b\right )^{3/2}}} \]

________________________________________________________________________________________

Rubi [F]  time = 0.16, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1}{x^4 \sqrt {b+\sqrt {b^2+a x^2}}} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Int[1/(x^4*Sqrt[b + Sqrt[b^2 + a*x^2]]),x]

[Out]

Defer[Int][1/(x^4*Sqrt[b + Sqrt[b^2 + a*x^2]]), x]

Rubi steps

\begin {align*} \int \frac {1}{x^4 \sqrt {b+\sqrt {b^2+a x^2}}} \, dx &=\int \frac {1}{x^4 \sqrt {b+\sqrt {b^2+a x^2}}} \, dx\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.61, size = 196, normalized size = 0.81 \begin {gather*} \frac {a^2 x \left (17 \left (2 b \sqrt {a x^2+b^2}+a x^2+2 b^2\right ) \, _2F_1\left (-\frac {5}{2},1;-\frac {3}{2};\frac {b-\sqrt {b^2+a x^2}}{2 b}\right )-2 \left (\left (2 b \sqrt {a x^2+b^2}+a x^2+2 b^2\right ) \, _2F_1\left (-\frac {5}{2},2;-\frac {3}{2};\frac {b-\sqrt {b^2+a x^2}}{2 b}\right )+5 b \left (7 \sqrt {a x^2+b^2}-b\right )\right )\right )}{160 b \left (\sqrt {a x^2+b^2}-b\right )^3 \left (\sqrt {a x^2+b^2}+b\right )^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x^4*Sqrt[b + Sqrt[b^2 + a*x^2]]),x]

[Out]

(a^2*x*(17*(2*b^2 + a*x^2 + 2*b*Sqrt[b^2 + a*x^2])*Hypergeometric2F1[-5/2, 1, -3/2, (b - Sqrt[b^2 + a*x^2])/(2
*b)] - 2*(5*b*(-b + 7*Sqrt[b^2 + a*x^2]) + (2*b^2 + a*x^2 + 2*b*Sqrt[b^2 + a*x^2])*Hypergeometric2F1[-5/2, 2,
-3/2, (b - Sqrt[b^2 + a*x^2])/(2*b)])))/(160*b*(-b + Sqrt[b^2 + a*x^2])^3*(b + Sqrt[b^2 + a*x^2])^(5/2))

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.38, size = 211, normalized size = 0.87 \begin {gather*} \frac {a^{3/2} \left (-56 b^3-8 b^2 \sqrt {b^2+a x^2}\right )+a^{5/2} \left (5 b x^2+15 x^2 \sqrt {b^2+a x^2}\right )}{\frac {384 a^{3/2} b^4 x^3 \sqrt {b^2+a x^2}}{\left (b+\sqrt {b^2+a x^2}\right )^{3/2}}+\frac {192 a^{3/2} b^3 x^3 \left (2 b^2+a x^2\right )}{\left (b+\sqrt {b^2+a x^2}\right )^{3/2}}}+\frac {5 a^{3/2} \tan ^{-1}\left (\frac {\sqrt {a} x}{\sqrt {2} \sqrt {b} \sqrt {b+\sqrt {b^2+a x^2}}}\right )}{64 \sqrt {2} b^{7/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[1/(x^4*Sqrt[b + Sqrt[b^2 + a*x^2]]),x]

[Out]

(a^(3/2)*(-56*b^3 - 8*b^2*Sqrt[b^2 + a*x^2]) + a^(5/2)*(5*b*x^2 + 15*x^2*Sqrt[b^2 + a*x^2]))/((384*a^(3/2)*b^4
*x^3*Sqrt[b^2 + a*x^2])/(b + Sqrt[b^2 + a*x^2])^(3/2) + (192*a^(3/2)*b^3*x^3*(2*b^2 + a*x^2))/(b + Sqrt[b^2 +
a*x^2])^(3/2)) + (5*a^(3/2)*ArcTan[(Sqrt[a]*x)/(Sqrt[2]*Sqrt[b]*Sqrt[b + Sqrt[b^2 + a*x^2]])])/(64*Sqrt[2]*b^(
7/2))

________________________________________________________________________________________

fricas [A]  time = 156.94, size = 336, normalized size = 1.38 \begin {gather*} \left [\frac {15 \, \sqrt {\frac {1}{2}} a^{2} x^{5} \sqrt {-\frac {a}{b}} \log \left (-\frac {a^{2} x^{3} + 4 \, a b^{2} x - 4 \, \sqrt {a x^{2} + b^{2}} a b x - 4 \, {\left (2 \, \sqrt {\frac {1}{2}} \sqrt {a x^{2} + b^{2}} b^{2} \sqrt {-\frac {a}{b}} - \sqrt {\frac {1}{2}} {\left (a b x^{2} + 2 \, b^{3}\right )} \sqrt {-\frac {a}{b}}\right )} \sqrt {b + \sqrt {a x^{2} + b^{2}}}}{x^{3}}\right ) + 2 \, {\left (15 \, a^{2} x^{4} + 2 \, a b^{2} x^{2} + 48 \, b^{4} - 2 \, {\left (5 \, a b x^{2} + 24 \, b^{3}\right )} \sqrt {a x^{2} + b^{2}}\right )} \sqrt {b + \sqrt {a x^{2} + b^{2}}}}{384 \, a b^{3} x^{5}}, -\frac {15 \, \sqrt {\frac {1}{2}} a^{2} x^{5} \sqrt {\frac {a}{b}} \arctan \left (\frac {2 \, \sqrt {\frac {1}{2}} \sqrt {b + \sqrt {a x^{2} + b^{2}}} b \sqrt {\frac {a}{b}}}{a x}\right ) - {\left (15 \, a^{2} x^{4} + 2 \, a b^{2} x^{2} + 48 \, b^{4} - 2 \, {\left (5 \, a b x^{2} + 24 \, b^{3}\right )} \sqrt {a x^{2} + b^{2}}\right )} \sqrt {b + \sqrt {a x^{2} + b^{2}}}}{192 \, a b^{3} x^{5}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(b+(a*x^2+b^2)^(1/2))^(1/2),x, algorithm="fricas")

[Out]

[1/384*(15*sqrt(1/2)*a^2*x^5*sqrt(-a/b)*log(-(a^2*x^3 + 4*a*b^2*x - 4*sqrt(a*x^2 + b^2)*a*b*x - 4*(2*sqrt(1/2)
*sqrt(a*x^2 + b^2)*b^2*sqrt(-a/b) - sqrt(1/2)*(a*b*x^2 + 2*b^3)*sqrt(-a/b))*sqrt(b + sqrt(a*x^2 + b^2)))/x^3)
+ 2*(15*a^2*x^4 + 2*a*b^2*x^2 + 48*b^4 - 2*(5*a*b*x^2 + 24*b^3)*sqrt(a*x^2 + b^2))*sqrt(b + sqrt(a*x^2 + b^2))
)/(a*b^3*x^5), -1/192*(15*sqrt(1/2)*a^2*x^5*sqrt(a/b)*arctan(2*sqrt(1/2)*sqrt(b + sqrt(a*x^2 + b^2))*b*sqrt(a/
b)/(a*x)) - (15*a^2*x^4 + 2*a*b^2*x^2 + 48*b^4 - 2*(5*a*b*x^2 + 24*b^3)*sqrt(a*x^2 + b^2))*sqrt(b + sqrt(a*x^2
 + b^2)))/(a*b^3*x^5)]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {b + \sqrt {a x^{2} + b^{2}}} x^{4}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(b+(a*x^2+b^2)^(1/2))^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(b + sqrt(a*x^2 + b^2))*x^4), x)

________________________________________________________________________________________

maple [C]  time = 0.04, size = 31, normalized size = 0.13

method result size
meijerg \(-\frac {\sqrt {2}\, \hypergeom \left (\left [-\frac {3}{2}, \frac {1}{4}, \frac {3}{4}\right ], \left [-\frac {1}{2}, \frac {3}{2}\right ], -\frac {x^{2} a}{b^{2}}\right )}{6 \left (b^{2}\right )^{\frac {1}{4}} x^{3}}\) \(31\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^4/(b+(a*x^2+b^2)^(1/2))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/6/(b^2)^(1/4)*2^(1/2)/x^3*hypergeom([-3/2,1/4,3/4],[-1/2,3/2],-x^2*a/b^2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {b + \sqrt {a x^{2} + b^{2}}} x^{4}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(b+(a*x^2+b^2)^(1/2))^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(b + sqrt(a*x^2 + b^2))*x^4), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {1}{x^4\,\sqrt {b+\sqrt {b^2+a\,x^2}}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^4*(b + (a*x^2 + b^2)^(1/2))^(1/2)),x)

[Out]

int(1/(x^4*(b + (a*x^2 + b^2)^(1/2))^(1/2)), x)

________________________________________________________________________________________

sympy [C]  time = 1.28, size = 49, normalized size = 0.20 \begin {gather*} - \frac {\Gamma \left (\frac {1}{4}\right ) \Gamma \left (\frac {3}{4}\right ) {{}_{3}F_{2}\left (\begin {matrix} - \frac {3}{2}, \frac {1}{4}, \frac {3}{4} \\ - \frac {1}{2}, \frac {3}{2} \end {matrix}\middle | {\frac {a x^{2} e^{i \pi }}{b^{2}}} \right )}}{6 \pi \sqrt {b} x^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**4/(b+(a*x**2+b**2)**(1/2))**(1/2),x)

[Out]

-gamma(1/4)*gamma(3/4)*hyper((-3/2, 1/4, 3/4), (-1/2, 3/2), a*x**2*exp_polar(I*pi)/b**2)/(6*pi*sqrt(b)*x**3)

________________________________________________________________________________________