3.27.17 \(\int \frac {3+(1-2 k^2) x-3 k^2 x^2+k^2 x^3}{\sqrt [3]{(1-x^2) (1-k^2 x^2)} (-1+d-(1+2 d) x+(d+k^2) x^2+k^2 x^3)} \, dx\)

Optimal. Leaf size=229 \[ \frac {\log \left (d^{2/3} x^2-2 d^{2/3} x+d^{2/3}+\left (\sqrt [3]{d}-\sqrt [3]{d} x\right ) \sqrt [3]{k^2 x^4+\left (-k^2-1\right ) x^2+1}+\left (k^2 x^4+\left (-k^2-1\right ) x^2+1\right )^{2/3}\right )}{2 \sqrt [3]{d}}-\frac {\log \left (\sqrt [3]{d} x-\sqrt [3]{d}+\sqrt [3]{k^2 x^4+\left (-k^2-1\right ) x^2+1}\right )}{\sqrt [3]{d}}-\frac {\sqrt {3} \tan ^{-1}\left (\frac {\sqrt {3} \sqrt [3]{k^2 x^4+\left (-k^2-1\right ) x^2+1}}{-2 \sqrt [3]{d} x+2 \sqrt [3]{d}+\sqrt [3]{k^2 x^4+\left (-k^2-1\right ) x^2+1}}\right )}{\sqrt [3]{d}} \]

________________________________________________________________________________________

Rubi [F]  time = 5.17, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {3+\left (1-2 k^2\right ) x-3 k^2 x^2+k^2 x^3}{\sqrt [3]{\left (1-x^2\right ) \left (1-k^2 x^2\right )} \left (-1+d-(1+2 d) x+\left (d+k^2\right ) x^2+k^2 x^3\right )} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Int[(3 + (1 - 2*k^2)*x - 3*k^2*x^2 + k^2*x^3)/(((1 - x^2)*(1 - k^2*x^2))^(1/3)*(-1 + d - (1 + 2*d)*x + (d + k^
2)*x^2 + k^2*x^3)),x]

[Out]

(x*(1 - x^2)^(1/3)*(1 - k^2*x^2)^(1/3)*AppellF1[1/2, 1/3, 1/3, 3/2, x^2, k^2*x^2])/((1 - x^2)*(1 - k^2*x^2))^(
1/3) - ((4 - d)*(1 - x^2)^(1/3)*(1 - k^2*x^2)^(1/3)*Defer[Int][1/((1 - x^2)^(1/3)*(1 - k^2*x^2)^(1/3)*(1 - d +
 (1 + 2*d)*x - (d + k^2)*x^2 - k^2*x^3)), x])/((1 - x^2)*(1 - k^2*x^2))^(1/3) - (2*(1 + d - k^2)*(1 - x^2)^(1/
3)*(1 - k^2*x^2)^(1/3)*Defer[Int][x/((1 - x^2)^(1/3)*(1 - k^2*x^2)^(1/3)*(1 - d + (1 + 2*d)*x - (d + k^2)*x^2
- k^2*x^3)), x])/((1 - x^2)*(1 - k^2*x^2))^(1/3) + ((d + 4*k^2)*(1 - x^2)^(1/3)*(1 - k^2*x^2)^(1/3)*Defer[Int]
[x^2/((1 - x^2)^(1/3)*(1 - k^2*x^2)^(1/3)*(1 - d + (1 + 2*d)*x - (d + k^2)*x^2 - k^2*x^3)), x])/((1 - x^2)*(1
- k^2*x^2))^(1/3)

Rubi steps

\begin {align*} \int \frac {3+\left (1-2 k^2\right ) x-3 k^2 x^2+k^2 x^3}{\sqrt [3]{\left (1-x^2\right ) \left (1-k^2 x^2\right )} \left (-1+d-(1+2 d) x+\left (d+k^2\right ) x^2+k^2 x^3\right )} \, dx &=\frac {\left (\sqrt [3]{1-x^2} \sqrt [3]{1-k^2 x^2}\right ) \int \frac {3+\left (1-2 k^2\right ) x-3 k^2 x^2+k^2 x^3}{\sqrt [3]{1-x^2} \sqrt [3]{1-k^2 x^2} \left (-1+d-(1+2 d) x+\left (d+k^2\right ) x^2+k^2 x^3\right )} \, dx}{\sqrt [3]{\left (1-x^2\right ) \left (1-k^2 x^2\right )}}\\ &=\frac {\left (\sqrt [3]{1-x^2} \sqrt [3]{1-k^2 x^2}\right ) \int \left (\frac {1}{\sqrt [3]{1-x^2} \sqrt [3]{1-k^2 x^2}}+\frac {4-d+2 \left (1+d-k^2\right ) x-\left (d+4 k^2\right ) x^2}{\sqrt [3]{1-x^2} \sqrt [3]{1-k^2 x^2} \left (-1+d-(1+2 d) x+\left (d+k^2\right ) x^2+k^2 x^3\right )}\right ) \, dx}{\sqrt [3]{\left (1-x^2\right ) \left (1-k^2 x^2\right )}}\\ &=\frac {\left (\sqrt [3]{1-x^2} \sqrt [3]{1-k^2 x^2}\right ) \int \frac {1}{\sqrt [3]{1-x^2} \sqrt [3]{1-k^2 x^2}} \, dx}{\sqrt [3]{\left (1-x^2\right ) \left (1-k^2 x^2\right )}}+\frac {\left (\sqrt [3]{1-x^2} \sqrt [3]{1-k^2 x^2}\right ) \int \frac {4-d+2 \left (1+d-k^2\right ) x-\left (d+4 k^2\right ) x^2}{\sqrt [3]{1-x^2} \sqrt [3]{1-k^2 x^2} \left (-1+d-(1+2 d) x+\left (d+k^2\right ) x^2+k^2 x^3\right )} \, dx}{\sqrt [3]{\left (1-x^2\right ) \left (1-k^2 x^2\right )}}\\ &=\frac {x \sqrt [3]{1-x^2} \sqrt [3]{1-k^2 x^2} F_1\left (\frac {1}{2};\frac {1}{3},\frac {1}{3};\frac {3}{2};x^2,k^2 x^2\right )}{\sqrt [3]{\left (1-x^2\right ) \left (1-k^2 x^2\right )}}+\frac {\left (\sqrt [3]{1-x^2} \sqrt [3]{1-k^2 x^2}\right ) \int \left (\frac {\left (1-\frac {4}{d}\right ) d}{\sqrt [3]{1-x^2} \sqrt [3]{1-k^2 x^2} \left (1-d+(1+2 d) x-\left (d+k^2\right ) x^2-k^2 x^3\right )}+\frac {2 \left (-1-d+k^2\right ) x}{\sqrt [3]{1-x^2} \sqrt [3]{1-k^2 x^2} \left (1-d+(1+2 d) x-\left (d+k^2\right ) x^2-k^2 x^3\right )}+\frac {\left (d+4 k^2\right ) x^2}{\sqrt [3]{1-x^2} \sqrt [3]{1-k^2 x^2} \left (1-d+(1+2 d) x-\left (d+k^2\right ) x^2-k^2 x^3\right )}\right ) \, dx}{\sqrt [3]{\left (1-x^2\right ) \left (1-k^2 x^2\right )}}\\ &=\frac {x \sqrt [3]{1-x^2} \sqrt [3]{1-k^2 x^2} F_1\left (\frac {1}{2};\frac {1}{3},\frac {1}{3};\frac {3}{2};x^2,k^2 x^2\right )}{\sqrt [3]{\left (1-x^2\right ) \left (1-k^2 x^2\right )}}+\frac {\left ((-4+d) \sqrt [3]{1-x^2} \sqrt [3]{1-k^2 x^2}\right ) \int \frac {1}{\sqrt [3]{1-x^2} \sqrt [3]{1-k^2 x^2} \left (1-d+(1+2 d) x-\left (d+k^2\right ) x^2-k^2 x^3\right )} \, dx}{\sqrt [3]{\left (1-x^2\right ) \left (1-k^2 x^2\right )}}-\frac {\left (2 \left (1+d-k^2\right ) \sqrt [3]{1-x^2} \sqrt [3]{1-k^2 x^2}\right ) \int \frac {x}{\sqrt [3]{1-x^2} \sqrt [3]{1-k^2 x^2} \left (1-d+(1+2 d) x-\left (d+k^2\right ) x^2-k^2 x^3\right )} \, dx}{\sqrt [3]{\left (1-x^2\right ) \left (1-k^2 x^2\right )}}+\frac {\left (\left (d+4 k^2\right ) \sqrt [3]{1-x^2} \sqrt [3]{1-k^2 x^2}\right ) \int \frac {x^2}{\sqrt [3]{1-x^2} \sqrt [3]{1-k^2 x^2} \left (1-d+(1+2 d) x-\left (d+k^2\right ) x^2-k^2 x^3\right )} \, dx}{\sqrt [3]{\left (1-x^2\right ) \left (1-k^2 x^2\right )}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [F]  time = 3.72, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {3+\left (1-2 k^2\right ) x-3 k^2 x^2+k^2 x^3}{\sqrt [3]{\left (1-x^2\right ) \left (1-k^2 x^2\right )} \left (-1+d-(1+2 d) x+\left (d+k^2\right ) x^2+k^2 x^3\right )} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Integrate[(3 + (1 - 2*k^2)*x - 3*k^2*x^2 + k^2*x^3)/(((1 - x^2)*(1 - k^2*x^2))^(1/3)*(-1 + d - (1 + 2*d)*x + (
d + k^2)*x^2 + k^2*x^3)),x]

[Out]

Integrate[(3 + (1 - 2*k^2)*x - 3*k^2*x^2 + k^2*x^3)/(((1 - x^2)*(1 - k^2*x^2))^(1/3)*(-1 + d - (1 + 2*d)*x + (
d + k^2)*x^2 + k^2*x^3)), x]

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 5.62, size = 229, normalized size = 1.00 \begin {gather*} -\frac {\sqrt {3} \tan ^{-1}\left (\frac {\sqrt {3} \sqrt [3]{1+\left (-1-k^2\right ) x^2+k^2 x^4}}{2 \sqrt [3]{d}-2 \sqrt [3]{d} x+\sqrt [3]{1+\left (-1-k^2\right ) x^2+k^2 x^4}}\right )}{\sqrt [3]{d}}-\frac {\log \left (-\sqrt [3]{d}+\sqrt [3]{d} x+\sqrt [3]{1+\left (-1-k^2\right ) x^2+k^2 x^4}\right )}{\sqrt [3]{d}}+\frac {\log \left (d^{2/3}-2 d^{2/3} x+d^{2/3} x^2+\left (\sqrt [3]{d}-\sqrt [3]{d} x\right ) \sqrt [3]{1+\left (-1-k^2\right ) x^2+k^2 x^4}+\left (1+\left (-1-k^2\right ) x^2+k^2 x^4\right )^{2/3}\right )}{2 \sqrt [3]{d}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(3 + (1 - 2*k^2)*x - 3*k^2*x^2 + k^2*x^3)/(((1 - x^2)*(1 - k^2*x^2))^(1/3)*(-1 + d - (1 + 2
*d)*x + (d + k^2)*x^2 + k^2*x^3)),x]

[Out]

-((Sqrt[3]*ArcTan[(Sqrt[3]*(1 + (-1 - k^2)*x^2 + k^2*x^4)^(1/3))/(2*d^(1/3) - 2*d^(1/3)*x + (1 + (-1 - k^2)*x^
2 + k^2*x^4)^(1/3))])/d^(1/3)) - Log[-d^(1/3) + d^(1/3)*x + (1 + (-1 - k^2)*x^2 + k^2*x^4)^(1/3)]/d^(1/3) + Lo
g[d^(2/3) - 2*d^(2/3)*x + d^(2/3)*x^2 + (d^(1/3) - d^(1/3)*x)*(1 + (-1 - k^2)*x^2 + k^2*x^4)^(1/3) + (1 + (-1
- k^2)*x^2 + k^2*x^4)^(2/3)]/(2*d^(1/3))

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+(-2*k^2+1)*x-3*k^2*x^2+k^2*x^3)/((-x^2+1)*(-k^2*x^2+1))^(1/3)/(-1+d-(1+2*d)*x+(k^2+d)*x^2+k^2*x^3
),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {k^{2} x^{3} - 3 \, k^{2} x^{2} - {\left (2 \, k^{2} - 1\right )} x + 3}{{\left (k^{2} x^{3} + {\left (k^{2} + d\right )} x^{2} - {\left (2 \, d + 1\right )} x + d - 1\right )} \left ({\left (k^{2} x^{2} - 1\right )} {\left (x^{2} - 1\right )}\right )^{\frac {1}{3}}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+(-2*k^2+1)*x-3*k^2*x^2+k^2*x^3)/((-x^2+1)*(-k^2*x^2+1))^(1/3)/(-1+d-(1+2*d)*x+(k^2+d)*x^2+k^2*x^3
),x, algorithm="giac")

[Out]

integrate((k^2*x^3 - 3*k^2*x^2 - (2*k^2 - 1)*x + 3)/((k^2*x^3 + (k^2 + d)*x^2 - (2*d + 1)*x + d - 1)*((k^2*x^2
 - 1)*(x^2 - 1))^(1/3)), x)

________________________________________________________________________________________

maple [F]  time = 0.03, size = 0, normalized size = 0.00 \[\int \frac {3+\left (-2 k^{2}+1\right ) x -3 k^{2} x^{2}+k^{2} x^{3}}{\left (\left (-x^{2}+1\right ) \left (-k^{2} x^{2}+1\right )\right )^{\frac {1}{3}} \left (-1+d -\left (1+2 d \right ) x +\left (k^{2}+d \right ) x^{2}+k^{2} x^{3}\right )}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3+(-2*k^2+1)*x-3*k^2*x^2+k^2*x^3)/((-x^2+1)*(-k^2*x^2+1))^(1/3)/(-1+d-(1+2*d)*x+(k^2+d)*x^2+k^2*x^3),x)

[Out]

int((3+(-2*k^2+1)*x-3*k^2*x^2+k^2*x^3)/((-x^2+1)*(-k^2*x^2+1))^(1/3)/(-1+d-(1+2*d)*x+(k^2+d)*x^2+k^2*x^3),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {k^{2} x^{3} - 3 \, k^{2} x^{2} - {\left (2 \, k^{2} - 1\right )} x + 3}{{\left (k^{2} x^{3} + {\left (k^{2} + d\right )} x^{2} - {\left (2 \, d + 1\right )} x + d - 1\right )} \left ({\left (k^{2} x^{2} - 1\right )} {\left (x^{2} - 1\right )}\right )^{\frac {1}{3}}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+(-2*k^2+1)*x-3*k^2*x^2+k^2*x^3)/((-x^2+1)*(-k^2*x^2+1))^(1/3)/(-1+d-(1+2*d)*x+(k^2+d)*x^2+k^2*x^3
),x, algorithm="maxima")

[Out]

integrate((k^2*x^3 - 3*k^2*x^2 - (2*k^2 - 1)*x + 3)/((k^2*x^3 + (k^2 + d)*x^2 - (2*d + 1)*x + d - 1)*((k^2*x^2
 - 1)*(x^2 - 1))^(1/3)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} -\int \frac {3\,k^2\,x^2-k^2\,x^3+x\,\left (2\,k^2-1\right )-3}{{\left (\left (x^2-1\right )\,\left (k^2\,x^2-1\right )\right )}^{1/3}\,\left (d+k^2\,x^3+x^2\,\left (k^2+d\right )-x\,\left (2\,d+1\right )-1\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(3*k^2*x^2 - k^2*x^3 + x*(2*k^2 - 1) - 3)/(((x^2 - 1)*(k^2*x^2 - 1))^(1/3)*(d + k^2*x^3 + x^2*(d + k^2) -
 x*(2*d + 1) - 1)),x)

[Out]

-int((3*k^2*x^2 - k^2*x^3 + x*(2*k^2 - 1) - 3)/(((x^2 - 1)*(k^2*x^2 - 1))^(1/3)*(d + k^2*x^3 + x^2*(d + k^2) -
 x*(2*d + 1) - 1)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+(-2*k**2+1)*x-3*k**2*x**2+k**2*x**3)/((-x**2+1)*(-k**2*x**2+1))**(1/3)/(-1+d-(1+2*d)*x+(k**2+d)*x
**2+k**2*x**3),x)

[Out]

Timed out

________________________________________________________________________________________