3.23.88 \(\int \frac {-b+a x^6}{\sqrt [3]{-x+x^3} (-d+c x^6)} \, dx\)

Optimal. Leaf size=174 \[ \frac {(a d-b c) \text {RootSum}\left [\text {$\#$1}^9 d-3 \text {$\#$1}^6 d+3 \text {$\#$1}^3 d+c-d\& ,\frac {\log \left (\sqrt [3]{x^3-x}-\text {$\#$1} x\right )-\log (x)}{\text {$\#$1}}\& \right ]}{6 c d}-\frac {a \log \left (\sqrt [3]{x^3-x}-x\right )}{2 c}+\frac {\sqrt {3} a \tan ^{-1}\left (\frac {\sqrt {3} x}{2 \sqrt [3]{x^3-x}+x}\right )}{2 c}+\frac {a \log \left (\sqrt [3]{x^3-x} x+\left (x^3-x\right )^{2/3}+x^2\right )}{4 c} \]

________________________________________________________________________________________

Rubi [F]  time = 1.55, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-b+a x^6}{\sqrt [3]{-x+x^3} \left (-d+c x^6\right )} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Int[(-b + a*x^6)/((-x + x^3)^(1/3)*(-d + c*x^6)),x]

[Out]

(Sqrt[3]*a*x^(1/3)*(-1 + x^2)^(1/3)*ArcTan[(1 + (2*x^(2/3))/(-1 + x^2)^(1/3))/Sqrt[3]])/(2*c*(-x + x^3)^(1/3))
 - (3*a*x^(1/3)*(-1 + x^2)^(1/3)*Log[x^(2/3) - (-1 + x^2)^(1/3)])/(4*c*(-x + x^3)^(1/3)) + ((b*c - a*d)*x^(1/3
)*(-1 + x^2)^(1/3)*Defer[Subst][Defer[Int][1/((d^(1/9) - c^(1/9)*x)*(-1 + x^3)^(1/3)), x], x, x^(2/3)])/(6*c*d
^(8/9)*(-x + x^3)^(1/3)) + ((b*c - a*d)*x^(1/3)*(-1 + x^2)^(1/3)*Defer[Subst][Defer[Int][1/((d^(1/9) + (-1)^(1
/9)*c^(1/9)*x)*(-1 + x^3)^(1/3)), x], x, x^(2/3)])/(6*c*d^(8/9)*(-x + x^3)^(1/3)) + ((b*c - a*d)*x^(1/3)*(-1 +
 x^2)^(1/3)*Defer[Subst][Defer[Int][1/((d^(1/9) - (-1)^(2/9)*c^(1/9)*x)*(-1 + x^3)^(1/3)), x], x, x^(2/3)])/(6
*c*d^(8/9)*(-x + x^3)^(1/3)) + ((b*c - a*d)*x^(1/3)*(-1 + x^2)^(1/3)*Defer[Subst][Defer[Int][1/((d^(1/9) + (-1
)^(1/3)*c^(1/9)*x)*(-1 + x^3)^(1/3)), x], x, x^(2/3)])/(6*c*d^(8/9)*(-x + x^3)^(1/3)) + ((b*c - a*d)*x^(1/3)*(
-1 + x^2)^(1/3)*Defer[Subst][Defer[Int][1/((d^(1/9) - (-1)^(4/9)*c^(1/9)*x)*(-1 + x^3)^(1/3)), x], x, x^(2/3)]
)/(6*c*d^(8/9)*(-x + x^3)^(1/3)) + ((b*c - a*d)*x^(1/3)*(-1 + x^2)^(1/3)*Defer[Subst][Defer[Int][1/((d^(1/9) +
 (-1)^(5/9)*c^(1/9)*x)*(-1 + x^3)^(1/3)), x], x, x^(2/3)])/(6*c*d^(8/9)*(-x + x^3)^(1/3)) + ((b*c - a*d)*x^(1/
3)*(-1 + x^2)^(1/3)*Defer[Subst][Defer[Int][1/((d^(1/9) - (-1)^(2/3)*c^(1/9)*x)*(-1 + x^3)^(1/3)), x], x, x^(2
/3)])/(6*c*d^(8/9)*(-x + x^3)^(1/3)) + ((b*c - a*d)*x^(1/3)*(-1 + x^2)^(1/3)*Defer[Subst][Defer[Int][1/((d^(1/
9) + (-1)^(7/9)*c^(1/9)*x)*(-1 + x^3)^(1/3)), x], x, x^(2/3)])/(6*c*d^(8/9)*(-x + x^3)^(1/3)) + ((b*c - a*d)*x
^(1/3)*(-1 + x^2)^(1/3)*Defer[Subst][Defer[Int][1/((d^(1/9) - (-1)^(8/9)*c^(1/9)*x)*(-1 + x^3)^(1/3)), x], x,
x^(2/3)])/(6*c*d^(8/9)*(-x + x^3)^(1/3))

Rubi steps

\begin {align*} \int \frac {-b+a x^6}{\sqrt [3]{-x+x^3} \left (-d+c x^6\right )} \, dx &=\frac {\left (\sqrt [3]{x} \sqrt [3]{-1+x^2}\right ) \int \frac {-b+a x^6}{\sqrt [3]{x} \sqrt [3]{-1+x^2} \left (-d+c x^6\right )} \, dx}{\sqrt [3]{-x+x^3}}\\ &=\frac {\left (3 \sqrt [3]{x} \sqrt [3]{-1+x^2}\right ) \operatorname {Subst}\left (\int \frac {-b+a x^9}{\sqrt [3]{-1+x^3} \left (-d+c x^9\right )} \, dx,x,x^{2/3}\right )}{2 \sqrt [3]{-x+x^3}}\\ &=\frac {\left (3 \sqrt [3]{x} \sqrt [3]{-1+x^2}\right ) \operatorname {Subst}\left (\int \left (\frac {a}{c \sqrt [3]{-1+x^3}}+\frac {-b c+a d}{c \sqrt [3]{-1+x^3} \left (-d+c x^9\right )}\right ) \, dx,x,x^{2/3}\right )}{2 \sqrt [3]{-x+x^3}}\\ &=\frac {\left (3 a \sqrt [3]{x} \sqrt [3]{-1+x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt [3]{-1+x^3}} \, dx,x,x^{2/3}\right )}{2 c \sqrt [3]{-x+x^3}}+\frac {\left (3 (-b c+a d) \sqrt [3]{x} \sqrt [3]{-1+x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt [3]{-1+x^3} \left (-d+c x^9\right )} \, dx,x,x^{2/3}\right )}{2 c \sqrt [3]{-x+x^3}}\\ &=\frac {\sqrt {3} a \sqrt [3]{x} \sqrt [3]{-1+x^2} \tan ^{-1}\left (\frac {1+\frac {2 x^{2/3}}{\sqrt [3]{-1+x^2}}}{\sqrt {3}}\right )}{2 c \sqrt [3]{-x+x^3}}-\frac {3 a \sqrt [3]{x} \sqrt [3]{-1+x^2} \log \left (x^{2/3}-\sqrt [3]{-1+x^2}\right )}{4 c \sqrt [3]{-x+x^3}}+\frac {\left (3 (-b c+a d) \sqrt [3]{x} \sqrt [3]{-1+x^2}\right ) \operatorname {Subst}\left (\int \left (-\frac {1}{9 d^{8/9} \left (\sqrt [9]{d}-\sqrt [9]{c} x\right ) \sqrt [3]{-1+x^3}}-\frac {1}{9 d^{8/9} \left (\sqrt [9]{d}+\sqrt [9]{-1} \sqrt [9]{c} x\right ) \sqrt [3]{-1+x^3}}-\frac {1}{9 d^{8/9} \left (\sqrt [9]{d}-(-1)^{2/9} \sqrt [9]{c} x\right ) \sqrt [3]{-1+x^3}}-\frac {1}{9 d^{8/9} \left (\sqrt [9]{d}+\sqrt [3]{-1} \sqrt [9]{c} x\right ) \sqrt [3]{-1+x^3}}-\frac {1}{9 d^{8/9} \left (\sqrt [9]{d}-(-1)^{4/9} \sqrt [9]{c} x\right ) \sqrt [3]{-1+x^3}}-\frac {1}{9 d^{8/9} \left (\sqrt [9]{d}+(-1)^{5/9} \sqrt [9]{c} x\right ) \sqrt [3]{-1+x^3}}-\frac {1}{9 d^{8/9} \left (\sqrt [9]{d}-(-1)^{2/3} \sqrt [9]{c} x\right ) \sqrt [3]{-1+x^3}}-\frac {1}{9 d^{8/9} \left (\sqrt [9]{d}+(-1)^{7/9} \sqrt [9]{c} x\right ) \sqrt [3]{-1+x^3}}-\frac {1}{9 d^{8/9} \left (\sqrt [9]{d}-(-1)^{8/9} \sqrt [9]{c} x\right ) \sqrt [3]{-1+x^3}}\right ) \, dx,x,x^{2/3}\right )}{2 c \sqrt [3]{-x+x^3}}\\ &=\frac {\sqrt {3} a \sqrt [3]{x} \sqrt [3]{-1+x^2} \tan ^{-1}\left (\frac {1+\frac {2 x^{2/3}}{\sqrt [3]{-1+x^2}}}{\sqrt {3}}\right )}{2 c \sqrt [3]{-x+x^3}}-\frac {3 a \sqrt [3]{x} \sqrt [3]{-1+x^2} \log \left (x^{2/3}-\sqrt [3]{-1+x^2}\right )}{4 c \sqrt [3]{-x+x^3}}-\frac {\left ((-b c+a d) \sqrt [3]{x} \sqrt [3]{-1+x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\left (\sqrt [9]{d}-\sqrt [9]{c} x\right ) \sqrt [3]{-1+x^3}} \, dx,x,x^{2/3}\right )}{6 c d^{8/9} \sqrt [3]{-x+x^3}}-\frac {\left ((-b c+a d) \sqrt [3]{x} \sqrt [3]{-1+x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\left (\sqrt [9]{d}+\sqrt [9]{-1} \sqrt [9]{c} x\right ) \sqrt [3]{-1+x^3}} \, dx,x,x^{2/3}\right )}{6 c d^{8/9} \sqrt [3]{-x+x^3}}-\frac {\left ((-b c+a d) \sqrt [3]{x} \sqrt [3]{-1+x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\left (\sqrt [9]{d}-(-1)^{2/9} \sqrt [9]{c} x\right ) \sqrt [3]{-1+x^3}} \, dx,x,x^{2/3}\right )}{6 c d^{8/9} \sqrt [3]{-x+x^3}}-\frac {\left ((-b c+a d) \sqrt [3]{x} \sqrt [3]{-1+x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\left (\sqrt [9]{d}+\sqrt [3]{-1} \sqrt [9]{c} x\right ) \sqrt [3]{-1+x^3}} \, dx,x,x^{2/3}\right )}{6 c d^{8/9} \sqrt [3]{-x+x^3}}-\frac {\left ((-b c+a d) \sqrt [3]{x} \sqrt [3]{-1+x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\left (\sqrt [9]{d}-(-1)^{4/9} \sqrt [9]{c} x\right ) \sqrt [3]{-1+x^3}} \, dx,x,x^{2/3}\right )}{6 c d^{8/9} \sqrt [3]{-x+x^3}}-\frac {\left ((-b c+a d) \sqrt [3]{x} \sqrt [3]{-1+x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\left (\sqrt [9]{d}+(-1)^{5/9} \sqrt [9]{c} x\right ) \sqrt [3]{-1+x^3}} \, dx,x,x^{2/3}\right )}{6 c d^{8/9} \sqrt [3]{-x+x^3}}-\frac {\left ((-b c+a d) \sqrt [3]{x} \sqrt [3]{-1+x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\left (\sqrt [9]{d}-(-1)^{2/3} \sqrt [9]{c} x\right ) \sqrt [3]{-1+x^3}} \, dx,x,x^{2/3}\right )}{6 c d^{8/9} \sqrt [3]{-x+x^3}}-\frac {\left ((-b c+a d) \sqrt [3]{x} \sqrt [3]{-1+x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\left (\sqrt [9]{d}+(-1)^{7/9} \sqrt [9]{c} x\right ) \sqrt [3]{-1+x^3}} \, dx,x,x^{2/3}\right )}{6 c d^{8/9} \sqrt [3]{-x+x^3}}-\frac {\left ((-b c+a d) \sqrt [3]{x} \sqrt [3]{-1+x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\left (\sqrt [9]{d}-(-1)^{8/9} \sqrt [9]{c} x\right ) \sqrt [3]{-1+x^3}} \, dx,x,x^{2/3}\right )}{6 c d^{8/9} \sqrt [3]{-x+x^3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [F]  time = 2.93, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {-b+a x^6}{\sqrt [3]{-x+x^3} \left (-d+c x^6\right )} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Integrate[(-b + a*x^6)/((-x + x^3)^(1/3)*(-d + c*x^6)),x]

[Out]

Integrate[(-b + a*x^6)/((-x + x^3)^(1/3)*(-d + c*x^6)), x]

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 2.79, size = 177, normalized size = 1.02 \begin {gather*} \frac {\sqrt {3} a \tan ^{-1}\left (\frac {\sqrt {3} x}{x+2 \sqrt [3]{-x+x^3}}\right )}{2 c}-\frac {a \log \left (-c x+c \sqrt [3]{-x+x^3}\right )}{2 c}+\frac {a \log \left (x^2+x \sqrt [3]{-x+x^3}+\left (-x+x^3\right )^{2/3}\right )}{4 c}+\frac {(-b c+a d) \text {RootSum}\left [c-d+3 d \text {$\#$1}^3-3 d \text {$\#$1}^6+d \text {$\#$1}^9\&,\frac {-\log (x)+\log \left (\sqrt [3]{-x+x^3}-x \text {$\#$1}\right )}{\text {$\#$1}}\&\right ]}{6 c d} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(-b + a*x^6)/((-x + x^3)^(1/3)*(-d + c*x^6)),x]

[Out]

(Sqrt[3]*a*ArcTan[(Sqrt[3]*x)/(x + 2*(-x + x^3)^(1/3))])/(2*c) - (a*Log[-(c*x) + c*(-x + x^3)^(1/3)])/(2*c) +
(a*Log[x^2 + x*(-x + x^3)^(1/3) + (-x + x^3)^(2/3)])/(4*c) + ((-(b*c) + a*d)*RootSum[c - d + 3*d*#1^3 - 3*d*#1
^6 + d*#1^9 & , (-Log[x] + Log[(-x + x^3)^(1/3) - x*#1])/#1 & ])/(6*c*d)

________________________________________________________________________________________

fricas [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x^6-b)/(x^3-x)^(1/3)/(c*x^6-d),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (re
sidue poly has multiple non-linear factors)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {a x^{6} - b}{{\left (c x^{6} - d\right )} {\left (x^{3} - x\right )}^{\frac {1}{3}}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x^6-b)/(x^3-x)^(1/3)/(c*x^6-d),x, algorithm="giac")

[Out]

integrate((a*x^6 - b)/((c*x^6 - d)*(x^3 - x)^(1/3)), x)

________________________________________________________________________________________

maple [F]  time = 0.06, size = 0, normalized size = 0.00 \[\int \frac {a \,x^{6}-b}{\left (x^{3}-x \right )^{\frac {1}{3}} \left (c \,x^{6}-d \right )}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x^6-b)/(x^3-x)^(1/3)/(c*x^6-d),x)

[Out]

int((a*x^6-b)/(x^3-x)^(1/3)/(c*x^6-d),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {a x^{6} - b}{{\left (c x^{6} - d\right )} {\left (x^{3} - x\right )}^{\frac {1}{3}}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x^6-b)/(x^3-x)^(1/3)/(c*x^6-d),x, algorithm="maxima")

[Out]

integrate((a*x^6 - b)/((c*x^6 - d)*(x^3 - x)^(1/3)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {b-a\,x^6}{{\left (x^3-x\right )}^{1/3}\,\left (d-c\,x^6\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b - a*x^6)/((x^3 - x)^(1/3)*(d - c*x^6)),x)

[Out]

int((b - a*x^6)/((x^3 - x)^(1/3)*(d - c*x^6)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {a x^{6} - b}{\sqrt [3]{x \left (x - 1\right ) \left (x + 1\right )} \left (c x^{6} - d\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x**6-b)/(x**3-x)**(1/3)/(c*x**6-d),x)

[Out]

Integral((a*x**6 - b)/((x*(x - 1)*(x + 1))**(1/3)*(c*x**6 - d)), x)

________________________________________________________________________________________