3.23.58 \(\int (\frac {1}{\sqrt {1-\sqrt {x}}}-\sqrt {1-\sqrt {x}-x}) \, dx\)

Optimal. Leaf size=171 \[ \sqrt {-x-\sqrt {x}+1} \left (\frac {1}{4} \sqrt {\left (2 \sqrt {x}+1\right )^2}+\frac {2}{3}\right )-\frac {2}{3} \sqrt {-x-\sqrt {x}+1} x-\frac {8 \sqrt {1-\sqrt {x}}}{3}-\frac {4}{3} \sqrt {1-\sqrt {x}} \sqrt {x}-\frac {2}{3} \sqrt {-x-\sqrt {x}+1} \sqrt {x}+\frac {5}{8} i \log \left (-2 \sqrt {-x-\sqrt {x}+1}+i \sqrt {\left (2 \sqrt {x}+1\right )^2}\right ) \]

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 102, normalized size of antiderivative = 0.60, number of steps used = 9, number of rules used = 7, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.219, Rules used = {190, 43, 1341, 640, 612, 619, 216} \begin {gather*} \frac {4}{3} \left (1-\sqrt {x}\right )^{3/2}-4 \sqrt {1-\sqrt {x}}+\frac {2}{3} \left (-x-\sqrt {x}+1\right )^{3/2}+\frac {1}{4} \left (2 \sqrt {x}+1\right ) \sqrt {-x-\sqrt {x}+1}+\frac {5}{8} \sin ^{-1}\left (\frac {2 \sqrt {x}+1}{\sqrt {5}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/Sqrt[1 - Sqrt[x]] - Sqrt[1 - Sqrt[x] - x],x]

[Out]

-4*Sqrt[1 - Sqrt[x]] + (4*(1 - Sqrt[x])^(3/2))/3 + ((1 + 2*Sqrt[x])*Sqrt[1 - Sqrt[x] - x])/4 + (2*(1 - Sqrt[x]
 - x)^(3/2))/3 + (5*ArcSin[(1 + 2*Sqrt[x])/Sqrt[5]])/8

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 190

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(1/n - 1)*(a + b*x)^p, x], x, x^n], x] /
; FreeQ[{a, b, p}, x] && FractionQ[n] && IntegerQ[1/n]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 612

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((b + 2*c*x)*(a + b*x + c*x^2)^p)/(2*c*(2*p +
1)), x] - Dist[(p*(b^2 - 4*a*c))/(2*c*(2*p + 1)), Int[(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c}, x]
 && NeQ[b^2 - 4*a*c, 0] && GtQ[p, 0] && IntegerQ[4*p]

Rule 619

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[1/(2*c*((-4*c)/(b^2 - 4*a*c))^p), Subst[Int[Si
mp[1 - x^2/(b^2 - 4*a*c), x]^p, x], x, b + 2*c*x], x] /; FreeQ[{a, b, c, p}, x] && GtQ[4*a - b^2/c, 0]

Rule 640

Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(a + b*x + c*x^2)^(p +
 1))/(2*c*(p + 1)), x] + Dist[(2*c*d - b*e)/(2*c), Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}
, x] && NeQ[2*c*d - b*e, 0] && NeQ[p, -1]

Rule 1341

Int[((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[n]}, Dist[k, Subst[I
nt[x^(k - 1)*(a + b*x^(k*n) + c*x^(2*k*n))^p, x], x, x^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && EqQ[n2, 2*n] &
& FractionQ[n]

Rubi steps

\begin {align*} \int \left (\frac {1}{\sqrt {1-\sqrt {x}}}-\sqrt {1-\sqrt {x}-x}\right ) \, dx &=\int \frac {1}{\sqrt {1-\sqrt {x}}} \, dx-\int \sqrt {1-\sqrt {x}-x} \, dx\\ &=2 \operatorname {Subst}\left (\int \frac {x}{\sqrt {1-x}} \, dx,x,\sqrt {x}\right )-2 \operatorname {Subst}\left (\int x \sqrt {1-x-x^2} \, dx,x,\sqrt {x}\right )\\ &=\frac {2}{3} \left (1-\sqrt {x}-x\right )^{3/2}+2 \operatorname {Subst}\left (\int \left (\frac {1}{\sqrt {1-x}}-\sqrt {1-x}\right ) \, dx,x,\sqrt {x}\right )+\operatorname {Subst}\left (\int \sqrt {1-x-x^2} \, dx,x,\sqrt {x}\right )\\ &=-4 \sqrt {1-\sqrt {x}}+\frac {4}{3} \left (1-\sqrt {x}\right )^{3/2}+\frac {1}{4} \left (1+2 \sqrt {x}\right ) \sqrt {1-\sqrt {x}-x}+\frac {2}{3} \left (1-\sqrt {x}-x\right )^{3/2}+\frac {5}{8} \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-x-x^2}} \, dx,x,\sqrt {x}\right )\\ &=-4 \sqrt {1-\sqrt {x}}+\frac {4}{3} \left (1-\sqrt {x}\right )^{3/2}+\frac {1}{4} \left (1+2 \sqrt {x}\right ) \sqrt {1-\sqrt {x}-x}+\frac {2}{3} \left (1-\sqrt {x}-x\right )^{3/2}-\frac {1}{8} \sqrt {5} \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x^2}{5}}} \, dx,x,-1-2 \sqrt {x}\right )\\ &=-4 \sqrt {1-\sqrt {x}}+\frac {4}{3} \left (1-\sqrt {x}\right )^{3/2}+\frac {1}{4} \left (1+2 \sqrt {x}\right ) \sqrt {1-\sqrt {x}-x}+\frac {2}{3} \left (1-\sqrt {x}-x\right )^{3/2}+\frac {5}{8} \sin ^{-1}\left (\frac {1+2 \sqrt {x}}{\sqrt {5}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.09, size = 113, normalized size = 0.66 \begin {gather*} 2 \left (\frac {2}{3} \left (1-\sqrt {x}\right )^{3/2}-2 \sqrt {1-\sqrt {x}}\right )-2 \left (\frac {1}{2} \left (\frac {1}{4} \sqrt {-x-\sqrt {x}+1} \left (-2 \sqrt {x}-1\right )+\frac {5}{8} \sin ^{-1}\left (\frac {-2 \sqrt {x}-1}{\sqrt {5}}\right )\right )-\frac {1}{3} \left (-x-\sqrt {x}+1\right )^{3/2}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/Sqrt[1 - Sqrt[x]] - Sqrt[1 - Sqrt[x] - x],x]

[Out]

2*(-2*Sqrt[1 - Sqrt[x]] + (2*(1 - Sqrt[x])^(3/2))/3) - 2*(-1/3*(1 - Sqrt[x] - x)^(3/2) + (((-1 - 2*Sqrt[x])*Sq
rt[1 - Sqrt[x] - x])/4 + (5*ArcSin[(-1 - 2*Sqrt[x])/Sqrt[5]])/8)/2)

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.62, size = 86, normalized size = 0.50 \begin {gather*} -\frac {4}{3} \sqrt {1-\sqrt {x}} \left (2+\sqrt {x}\right )+\frac {1}{12} \left (11-2 \sqrt {x}-8 x\right ) \sqrt {1-\sqrt {x}-x}-\frac {5}{4} \tan ^{-1}\left (\frac {-1+\sqrt {1-\sqrt {x}-x}}{\sqrt {x}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[1/Sqrt[1 - Sqrt[x]] - Sqrt[1 - Sqrt[x] - x],x]

[Out]

(-4*Sqrt[1 - Sqrt[x]]*(2 + Sqrt[x]))/3 + ((11 - 2*Sqrt[x] - 8*x)*Sqrt[1 - Sqrt[x] - x])/12 - (5*ArcTan[(-1 + S
qrt[1 - Sqrt[x] - x])/Sqrt[x]])/4

________________________________________________________________________________________

fricas [A]  time = 1.31, size = 100, normalized size = 0.58 \begin {gather*} -\frac {1}{12} \, {\left (8 \, x + 2 \, \sqrt {x} - 11\right )} \sqrt {-x - \sqrt {x} + 1} - \frac {4}{3} \, {\left (\sqrt {x} + 2\right )} \sqrt {-\sqrt {x} + 1} - \frac {5}{16} \, \arctan \left (-\frac {{\left (8 \, x^{2} - {\left (16 \, x^{2} - 38 \, x + 11\right )} \sqrt {x} - 9 \, x + 3\right )} \sqrt {-x - \sqrt {x} + 1}}{4 \, {\left (4 \, x^{3} - 13 \, x^{2} + 7 \, x - 1\right )}}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1-x^(1/2))^(1/2)-(1-x^(1/2)-x)^(1/2),x, algorithm="fricas")

[Out]

-1/12*(8*x + 2*sqrt(x) - 11)*sqrt(-x - sqrt(x) + 1) - 4/3*(sqrt(x) + 2)*sqrt(-sqrt(x) + 1) - 5/16*arctan(-1/4*
(8*x^2 - (16*x^2 - 38*x + 11)*sqrt(x) - 9*x + 3)*sqrt(-x - sqrt(x) + 1)/(4*x^3 - 13*x^2 + 7*x - 1))

________________________________________________________________________________________

giac [A]  time = 0.19, size = 66, normalized size = 0.39 \begin {gather*} -\frac {1}{12} \, {\left (2 \, \sqrt {x} {\left (4 \, \sqrt {x} + 1\right )} - 11\right )} \sqrt {-x - \sqrt {x} + 1} + \frac {4}{3} \, {\left (-\sqrt {x} + 1\right )}^{\frac {3}{2}} - 4 \, \sqrt {-\sqrt {x} + 1} + \frac {5}{8} \, \arcsin \left (\frac {1}{5} \, \sqrt {5} {\left (2 \, \sqrt {x} + 1\right )}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1-x^(1/2))^(1/2)-(1-x^(1/2)-x)^(1/2),x, algorithm="giac")

[Out]

-1/12*(2*sqrt(x)*(4*sqrt(x) + 1) - 11)*sqrt(-x - sqrt(x) + 1) + 4/3*(-sqrt(x) + 1)^(3/2) - 4*sqrt(-sqrt(x) + 1
) + 5/8*arcsin(1/5*sqrt(5)*(2*sqrt(x) + 1))

________________________________________________________________________________________

maple [A]  time = 0.12, size = 72, normalized size = 0.42

method result size
derivativedivides \(\frac {2 \left (1-\sqrt {x}-x \right )^{\frac {3}{2}}}{3}-\frac {\left (-2 \sqrt {x}-1\right ) \sqrt {1-\sqrt {x}-x}}{4}+\frac {5 \arcsin \left (\frac {2 \sqrt {5}\, \left (\sqrt {x}+\frac {1}{2}\right )}{5}\right )}{8}+\frac {4 \left (1-\sqrt {x}\right )^{\frac {3}{2}}}{3}-4 \sqrt {1-\sqrt {x}}\) \(72\)
default \(\frac {2 \left (1-\sqrt {x}-x \right )^{\frac {3}{2}}}{3}-\frac {\left (-2 \sqrt {x}-1\right ) \sqrt {1-\sqrt {x}-x}}{4}+\frac {5 \arcsin \left (\frac {2 \sqrt {5}\, \left (\sqrt {x}+\frac {1}{2}\right )}{5}\right )}{8}+\frac {4 \left (1-\sqrt {x}\right )^{\frac {3}{2}}}{3}-4 \sqrt {1-\sqrt {x}}\) \(72\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(1-x^(1/2))^(1/2)-(1-x^(1/2)-x)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/3*(1-x^(1/2)-x)^(3/2)-1/4*(-2*x^(1/2)-1)*(1-x^(1/2)-x)^(1/2)+5/8*arcsin(2/5*5^(1/2)*(x^(1/2)+1/2))+4/3*(1-x^
(1/2))^(3/2)-4*(1-x^(1/2))^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {4}{3} \, {\left (-\sqrt {x} + 1\right )}^{\frac {3}{2}} - 4 \, \sqrt {-\sqrt {x} + 1} - \int \sqrt {-x - \sqrt {x} + 1}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1-x^(1/2))^(1/2)-(1-x^(1/2)-x)^(1/2),x, algorithm="maxima")

[Out]

4/3*(-sqrt(x) + 1)^(3/2) - 4*sqrt(-sqrt(x) + 1) - integrate(sqrt(-x - sqrt(x) + 1), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} -\int \sqrt {1-\sqrt {x}-x}-\frac {1}{\sqrt {1-\sqrt {x}}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(1 - x^(1/2))^(1/2) - (1 - x^(1/2) - x)^(1/2),x)

[Out]

-int((1 - x^(1/2) - x)^(1/2) - 1/(1 - x^(1/2))^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} - \int \left (- \frac {1}{\sqrt {1 - \sqrt {x}}}\right )\, dx - \int \sqrt {- \sqrt {x} - x + 1}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1-x**(1/2))**(1/2)-(1-x**(1/2)-x)**(1/2),x)

[Out]

-Integral(-1/sqrt(1 - sqrt(x)), x) - Integral(sqrt(-sqrt(x) - x + 1), x)

________________________________________________________________________________________