3.23.6 \(\int \frac {a x^4+x^8}{\sqrt [4]{-b x^2+a x^4} (-b+2 a x^4+x^8)} \, dx\)

Optimal. Leaf size=163 \[ \frac {1}{8} \text {RootSum}\left [\text {$\#$1}^{16}-4 \text {$\#$1}^{12} a+6 \text {$\#$1}^8 a^2-2 \text {$\#$1}^8 a b-4 \text {$\#$1}^4 a^3+4 \text {$\#$1}^4 a^2 b+a^4-2 a^3 b-b^3\& ,\frac {\log \left (\sqrt [4]{a x^4-b x^2}-\text {$\#$1} x\right )-\log (x)}{\text {$\#$1}}\& \right ]+\frac {\tan ^{-1}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{a x^4-b x^2}}\right )}{\sqrt [4]{a}}+\frac {\tanh ^{-1}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{a x^4-b x^2}}\right )}{\sqrt [4]{a}} \]

________________________________________________________________________________________

Rubi [B]  time = 2.17, antiderivative size = 1315, normalized size of antiderivative = 8.07, number of steps used = 34, number of rules used = 13, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.317, Rules used = {1593, 2056, 6728, 1270, 1517, 240, 212, 206, 203, 1429, 377, 208, 205} \begin {gather*} \frac {\sqrt {x} \sqrt [4]{a x^2-b} \tan ^{-1}\left (\frac {\sqrt [4]{a} \sqrt {x}}{\sqrt [4]{a x^2-b}}\right )}{\sqrt [4]{a} \sqrt [4]{a x^4-b x^2}}-\frac {\sqrt [8]{-a-\sqrt {a^2+b}} \sqrt {x} \sqrt [4]{a x^2-b} \tan ^{-1}\left (\frac {\sqrt [4]{a \sqrt {-a-\sqrt {a^2+b}}-b} \sqrt {x}}{\sqrt [8]{-a-\sqrt {a^2+b}} \sqrt [4]{a x^2-b}}\right )}{4 \sqrt [4]{a \sqrt {-a-\sqrt {a^2+b}}-b} \sqrt [4]{a x^4-b x^2}}-\frac {\sqrt [8]{-a-\sqrt {a^2+b}} \sqrt {x} \sqrt [4]{a x^2-b} \tan ^{-1}\left (\frac {\sqrt [4]{\sqrt {-a-\sqrt {a^2+b}} a+b} \sqrt {x}}{\sqrt [8]{-a-\sqrt {a^2+b}} \sqrt [4]{a x^2-b}}\right )}{4 \sqrt [4]{\sqrt {-a-\sqrt {a^2+b}} a+b} \sqrt [4]{a x^4-b x^2}}-\frac {\sqrt [8]{\sqrt {a^2+b}-a} \sqrt {x} \sqrt [4]{a x^2-b} \tan ^{-1}\left (\frac {\sqrt [4]{a \sqrt {\sqrt {a^2+b}-a}-b} \sqrt {x}}{\sqrt [8]{\sqrt {a^2+b}-a} \sqrt [4]{a x^2-b}}\right )}{4 \sqrt [4]{a \sqrt {\sqrt {a^2+b}-a}-b} \sqrt [4]{a x^4-b x^2}}-\frac {\sqrt [8]{\sqrt {a^2+b}-a} \sqrt {x} \sqrt [4]{a x^2-b} \tan ^{-1}\left (\frac {\sqrt [4]{\sqrt {\sqrt {a^2+b}-a} a+b} \sqrt {x}}{\sqrt [8]{\sqrt {a^2+b}-a} \sqrt [4]{a x^2-b}}\right )}{4 \sqrt [4]{\sqrt {\sqrt {a^2+b}-a} a+b} \sqrt [4]{a x^4-b x^2}}+\frac {\sqrt {x} \sqrt [4]{a x^2-b} \tanh ^{-1}\left (\frac {\sqrt [4]{a} \sqrt {x}}{\sqrt [4]{a x^2-b}}\right )}{\sqrt [4]{a} \sqrt [4]{a x^4-b x^2}}-\frac {\sqrt [8]{-a-\sqrt {a^2+b}} \sqrt {x} \sqrt [4]{a x^2-b} \tanh ^{-1}\left (\frac {\sqrt [4]{a \sqrt {-a-\sqrt {a^2+b}}-b} \sqrt {x}}{\sqrt [8]{-a-\sqrt {a^2+b}} \sqrt [4]{a x^2-b}}\right )}{4 \sqrt [4]{a \sqrt {-a-\sqrt {a^2+b}}-b} \sqrt [4]{a x^4-b x^2}}-\frac {\sqrt [8]{-a-\sqrt {a^2+b}} \sqrt {x} \sqrt [4]{a x^2-b} \tanh ^{-1}\left (\frac {\sqrt [4]{\sqrt {-a-\sqrt {a^2+b}} a+b} \sqrt {x}}{\sqrt [8]{-a-\sqrt {a^2+b}} \sqrt [4]{a x^2-b}}\right )}{4 \sqrt [4]{\sqrt {-a-\sqrt {a^2+b}} a+b} \sqrt [4]{a x^4-b x^2}}-\frac {\sqrt [8]{\sqrt {a^2+b}-a} \sqrt {x} \sqrt [4]{a x^2-b} \tanh ^{-1}\left (\frac {\sqrt [4]{a \sqrt {\sqrt {a^2+b}-a}-b} \sqrt {x}}{\sqrt [8]{\sqrt {a^2+b}-a} \sqrt [4]{a x^2-b}}\right )}{4 \sqrt [4]{a \sqrt {\sqrt {a^2+b}-a}-b} \sqrt [4]{a x^4-b x^2}}-\frac {\sqrt [8]{\sqrt {a^2+b}-a} \sqrt {x} \sqrt [4]{a x^2-b} \tanh ^{-1}\left (\frac {\sqrt [4]{\sqrt {\sqrt {a^2+b}-a} a+b} \sqrt {x}}{\sqrt [8]{\sqrt {a^2+b}-a} \sqrt [4]{a x^2-b}}\right )}{4 \sqrt [4]{\sqrt {\sqrt {a^2+b}-a} a+b} \sqrt [4]{a x^4-b x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a*x^4 + x^8)/((-(b*x^2) + a*x^4)^(1/4)*(-b + 2*a*x^4 + x^8)),x]

[Out]

(Sqrt[x]*(-b + a*x^2)^(1/4)*ArcTan[(a^(1/4)*Sqrt[x])/(-b + a*x^2)^(1/4)])/(a^(1/4)*(-(b*x^2) + a*x^4)^(1/4)) -
 ((-a - Sqrt[a^2 + b])^(1/8)*Sqrt[x]*(-b + a*x^2)^(1/4)*ArcTan[((-b + a*Sqrt[-a - Sqrt[a^2 + b]])^(1/4)*Sqrt[x
])/((-a - Sqrt[a^2 + b])^(1/8)*(-b + a*x^2)^(1/4))])/(4*(-b + a*Sqrt[-a - Sqrt[a^2 + b]])^(1/4)*(-(b*x^2) + a*
x^4)^(1/4)) - ((-a - Sqrt[a^2 + b])^(1/8)*Sqrt[x]*(-b + a*x^2)^(1/4)*ArcTan[((b + a*Sqrt[-a - Sqrt[a^2 + b]])^
(1/4)*Sqrt[x])/((-a - Sqrt[a^2 + b])^(1/8)*(-b + a*x^2)^(1/4))])/(4*(b + a*Sqrt[-a - Sqrt[a^2 + b]])^(1/4)*(-(
b*x^2) + a*x^4)^(1/4)) - ((-a + Sqrt[a^2 + b])^(1/8)*Sqrt[x]*(-b + a*x^2)^(1/4)*ArcTan[((-b + a*Sqrt[-a + Sqrt
[a^2 + b]])^(1/4)*Sqrt[x])/((-a + Sqrt[a^2 + b])^(1/8)*(-b + a*x^2)^(1/4))])/(4*(-b + a*Sqrt[-a + Sqrt[a^2 + b
]])^(1/4)*(-(b*x^2) + a*x^4)^(1/4)) - ((-a + Sqrt[a^2 + b])^(1/8)*Sqrt[x]*(-b + a*x^2)^(1/4)*ArcTan[((b + a*Sq
rt[-a + Sqrt[a^2 + b]])^(1/4)*Sqrt[x])/((-a + Sqrt[a^2 + b])^(1/8)*(-b + a*x^2)^(1/4))])/(4*(b + a*Sqrt[-a + S
qrt[a^2 + b]])^(1/4)*(-(b*x^2) + a*x^4)^(1/4)) + (Sqrt[x]*(-b + a*x^2)^(1/4)*ArcTanh[(a^(1/4)*Sqrt[x])/(-b + a
*x^2)^(1/4)])/(a^(1/4)*(-(b*x^2) + a*x^4)^(1/4)) - ((-a - Sqrt[a^2 + b])^(1/8)*Sqrt[x]*(-b + a*x^2)^(1/4)*ArcT
anh[((-b + a*Sqrt[-a - Sqrt[a^2 + b]])^(1/4)*Sqrt[x])/((-a - Sqrt[a^2 + b])^(1/8)*(-b + a*x^2)^(1/4))])/(4*(-b
 + a*Sqrt[-a - Sqrt[a^2 + b]])^(1/4)*(-(b*x^2) + a*x^4)^(1/4)) - ((-a - Sqrt[a^2 + b])^(1/8)*Sqrt[x]*(-b + a*x
^2)^(1/4)*ArcTanh[((b + a*Sqrt[-a - Sqrt[a^2 + b]])^(1/4)*Sqrt[x])/((-a - Sqrt[a^2 + b])^(1/8)*(-b + a*x^2)^(1
/4))])/(4*(b + a*Sqrt[-a - Sqrt[a^2 + b]])^(1/4)*(-(b*x^2) + a*x^4)^(1/4)) - ((-a + Sqrt[a^2 + b])^(1/8)*Sqrt[
x]*(-b + a*x^2)^(1/4)*ArcTanh[((-b + a*Sqrt[-a + Sqrt[a^2 + b]])^(1/4)*Sqrt[x])/((-a + Sqrt[a^2 + b])^(1/8)*(-
b + a*x^2)^(1/4))])/(4*(-b + a*Sqrt[-a + Sqrt[a^2 + b]])^(1/4)*(-(b*x^2) + a*x^4)^(1/4)) - ((-a + Sqrt[a^2 + b
])^(1/8)*Sqrt[x]*(-b + a*x^2)^(1/4)*ArcTanh[((b + a*Sqrt[-a + Sqrt[a^2 + b]])^(1/4)*Sqrt[x])/((-a + Sqrt[a^2 +
 b])^(1/8)*(-b + a*x^2)^(1/4))])/(4*(b + a*Sqrt[-a + Sqrt[a^2 + b]])^(1/4)*(-(b*x^2) + a*x^4)^(1/4))

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 212

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b), 2]
]}, Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
 !GtQ[a/b, 0]

Rule 240

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^(p + 1/n), Subst[Int[1/(1 - b*x^n)^(p + 1/n + 1), x], x
, x/(a + b*x^n)^(1/n)], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[p, -2^(-1)] && IntegerQ[p
 + 1/n]

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 1270

Int[((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_), x_Symbol] :> With[{k = Denominat
or[m]}, Dist[k/f, Subst[Int[x^(k*(m + 1) - 1)*(d + (e*x^(2*k))/f)^q*(a + (c*x^(4*k))/f)^p, x], x, (f*x)^(1/k)]
, x]] /; FreeQ[{a, c, d, e, f, p, q}, x] && FractionQ[m] && IntegerQ[p]

Rule 1429

Int[((d_) + (e_.)*(x_)^(n_))^(q_)/((a_) + (c_.)*(x_)^(n2_)), x_Symbol] :> With[{r = Rt[-(a*c), 2]}, -Dist[c/(2
*r), Int[(d + e*x^n)^q/(r - c*x^n), x], x] - Dist[c/(2*r), Int[(d + e*x^n)^q/(r + c*x^n), x], x]] /; FreeQ[{a,
 c, d, e, n, q}, x] && EqQ[n2, 2*n] && NeQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[q]

Rule 1517

Int[(((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_)^(n_))^(q_))/((a_) + (c_.)*(x_)^(n2_.)), x_Symbol] :> Dist[f^(2*n)/
c, Int[(f*x)^(m - 2*n)*(d + e*x^n)^q, x], x] - Dist[(a*f^(2*n))/c, Int[((f*x)^(m - 2*n)*(d + e*x^n)^q)/(a + c*
x^(2*n)), x], x] /; FreeQ[{a, c, d, e, f, q}, x] && EqQ[n2, 2*n] && IGtQ[n, 0] &&  !IntegerQ[q] && GtQ[m, 2*n
- 1]

Rule 1593

Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^(q - p))^n, x] /; F
reeQ[{a, b, p, q}, x] && IntegerQ[n] && PosQ[q - p]

Rule 2056

Int[(u_.)*(P_)^(p_.), x_Symbol] :> With[{m = MinimumMonomialExponent[P, x]}, Dist[P^FracPart[p]/(x^(m*FracPart
[p])*Distrib[1/x^m, P]^FracPart[p]), Int[u*x^(m*p)*Distrib[1/x^m, P]^p, x], x]] /; FreeQ[p, x] &&  !IntegerQ[p
] && SumQ[P] && EveryQ[BinomialQ[#1, x] & , P] &&  !PolyQ[P, x, 2]

Rule 6728

Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a +
b*x^n + c*x^(2*n)), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {a x^4+x^8}{\sqrt [4]{-b x^2+a x^4} \left (-b+2 a x^4+x^8\right )} \, dx &=\int \frac {x^4 \left (a+x^4\right )}{\sqrt [4]{-b x^2+a x^4} \left (-b+2 a x^4+x^8\right )} \, dx\\ &=\frac {\left (\sqrt {x} \sqrt [4]{-b+a x^2}\right ) \int \frac {x^{7/2} \left (a+x^4\right )}{\sqrt [4]{-b+a x^2} \left (-b+2 a x^4+x^8\right )} \, dx}{\sqrt [4]{-b x^2+a x^4}}\\ &=\frac {\left (\sqrt {x} \sqrt [4]{-b+a x^2}\right ) \int \left (\frac {x^{7/2}}{\sqrt [4]{-b+a x^2} \left (2 a-2 \sqrt {a^2+b}+2 x^4\right )}+\frac {x^{7/2}}{\sqrt [4]{-b+a x^2} \left (2 a+2 \sqrt {a^2+b}+2 x^4\right )}\right ) \, dx}{\sqrt [4]{-b x^2+a x^4}}\\ &=\frac {\left (\sqrt {x} \sqrt [4]{-b+a x^2}\right ) \int \frac {x^{7/2}}{\sqrt [4]{-b+a x^2} \left (2 a-2 \sqrt {a^2+b}+2 x^4\right )} \, dx}{\sqrt [4]{-b x^2+a x^4}}+\frac {\left (\sqrt {x} \sqrt [4]{-b+a x^2}\right ) \int \frac {x^{7/2}}{\sqrt [4]{-b+a x^2} \left (2 a+2 \sqrt {a^2+b}+2 x^4\right )} \, dx}{\sqrt [4]{-b x^2+a x^4}}\\ &=\frac {\left (2 \sqrt {x} \sqrt [4]{-b+a x^2}\right ) \operatorname {Subst}\left (\int \frac {x^8}{\sqrt [4]{-b+a x^4} \left (2 a-2 \sqrt {a^2+b}+2 x^8\right )} \, dx,x,\sqrt {x}\right )}{\sqrt [4]{-b x^2+a x^4}}+\frac {\left (2 \sqrt {x} \sqrt [4]{-b+a x^2}\right ) \operatorname {Subst}\left (\int \frac {x^8}{\sqrt [4]{-b+a x^4} \left (2 a+2 \sqrt {a^2+b}+2 x^8\right )} \, dx,x,\sqrt {x}\right )}{\sqrt [4]{-b x^2+a x^4}}\\ &=2 \frac {\left (\sqrt {x} \sqrt [4]{-b+a x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt [4]{-b+a x^4}} \, dx,x,\sqrt {x}\right )}{\sqrt [4]{-b x^2+a x^4}}-\frac {\left (2 \left (a-\sqrt {a^2+b}\right ) \sqrt {x} \sqrt [4]{-b+a x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt [4]{-b+a x^4} \left (2 a-2 \sqrt {a^2+b}+2 x^8\right )} \, dx,x,\sqrt {x}\right )}{\sqrt [4]{-b x^2+a x^4}}-\frac {\left (2 \left (a+\sqrt {a^2+b}\right ) \sqrt {x} \sqrt [4]{-b+a x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt [4]{-b+a x^4} \left (2 a+2 \sqrt {a^2+b}+2 x^8\right )} \, dx,x,\sqrt {x}\right )}{\sqrt [4]{-b x^2+a x^4}}\\ &=2 \frac {\left (\sqrt {x} \sqrt [4]{-b+a x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{1-a x^4} \, dx,x,\frac {\sqrt {x}}{\sqrt [4]{-b+a x^2}}\right )}{\sqrt [4]{-b x^2+a x^4}}+\frac {\left (\left (a-\sqrt {a^2+b}\right ) \sqrt {x} \sqrt [4]{-b+a x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\left (2 \sqrt {-a+\sqrt {a^2+b}}-2 x^4\right ) \sqrt [4]{-b+a x^4}} \, dx,x,\sqrt {x}\right )}{\sqrt {-a+\sqrt {a^2+b}} \sqrt [4]{-b x^2+a x^4}}+\frac {\left (\left (a-\sqrt {a^2+b}\right ) \sqrt {x} \sqrt [4]{-b+a x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\left (2 \sqrt {-a+\sqrt {a^2+b}}+2 x^4\right ) \sqrt [4]{-b+a x^4}} \, dx,x,\sqrt {x}\right )}{\sqrt {-a+\sqrt {a^2+b}} \sqrt [4]{-b x^2+a x^4}}+\frac {\left (\left (a+\sqrt {a^2+b}\right ) \sqrt {x} \sqrt [4]{-b+a x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\left (2 \sqrt {-a-\sqrt {a^2+b}}-2 x^4\right ) \sqrt [4]{-b+a x^4}} \, dx,x,\sqrt {x}\right )}{\sqrt {-a-\sqrt {a^2+b}} \sqrt [4]{-b x^2+a x^4}}+\frac {\left (\left (a+\sqrt {a^2+b}\right ) \sqrt {x} \sqrt [4]{-b+a x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\left (2 \sqrt {-a-\sqrt {a^2+b}}+2 x^4\right ) \sqrt [4]{-b+a x^4}} \, dx,x,\sqrt {x}\right )}{\sqrt {-a-\sqrt {a^2+b}} \sqrt [4]{-b x^2+a x^4}}\\ &=2 \left (\frac {\left (\sqrt {x} \sqrt [4]{-b+a x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{1-\sqrt {a} x^2} \, dx,x,\frac {\sqrt {x}}{\sqrt [4]{-b+a x^2}}\right )}{2 \sqrt [4]{-b x^2+a x^4}}+\frac {\left (\sqrt {x} \sqrt [4]{-b+a x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{1+\sqrt {a} x^2} \, dx,x,\frac {\sqrt {x}}{\sqrt [4]{-b+a x^2}}\right )}{2 \sqrt [4]{-b x^2+a x^4}}\right )+\frac {\left (\left (a-\sqrt {a^2+b}\right ) \sqrt {x} \sqrt [4]{-b+a x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{2 \sqrt {-a+\sqrt {a^2+b}}-\left (-2 b+2 a \sqrt {-a+\sqrt {a^2+b}}\right ) x^4} \, dx,x,\frac {\sqrt {x}}{\sqrt [4]{-b+a x^2}}\right )}{\sqrt {-a+\sqrt {a^2+b}} \sqrt [4]{-b x^2+a x^4}}+\frac {\left (\left (a-\sqrt {a^2+b}\right ) \sqrt {x} \sqrt [4]{-b+a x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{2 \sqrt {-a+\sqrt {a^2+b}}-\left (2 b+2 a \sqrt {-a+\sqrt {a^2+b}}\right ) x^4} \, dx,x,\frac {\sqrt {x}}{\sqrt [4]{-b+a x^2}}\right )}{\sqrt {-a+\sqrt {a^2+b}} \sqrt [4]{-b x^2+a x^4}}+\frac {\left (\left (a+\sqrt {a^2+b}\right ) \sqrt {x} \sqrt [4]{-b+a x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{2 \sqrt {-a-\sqrt {a^2+b}}-\left (-2 b+2 a \sqrt {-a-\sqrt {a^2+b}}\right ) x^4} \, dx,x,\frac {\sqrt {x}}{\sqrt [4]{-b+a x^2}}\right )}{\sqrt {-a-\sqrt {a^2+b}} \sqrt [4]{-b x^2+a x^4}}+\frac {\left (\left (a+\sqrt {a^2+b}\right ) \sqrt {x} \sqrt [4]{-b+a x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{2 \sqrt {-a-\sqrt {a^2+b}}-\left (2 b+2 a \sqrt {-a-\sqrt {a^2+b}}\right ) x^4} \, dx,x,\frac {\sqrt {x}}{\sqrt [4]{-b+a x^2}}\right )}{\sqrt {-a-\sqrt {a^2+b}} \sqrt [4]{-b x^2+a x^4}}\\ &=2 \left (\frac {\sqrt {x} \sqrt [4]{-b+a x^2} \tan ^{-1}\left (\frac {\sqrt [4]{a} \sqrt {x}}{\sqrt [4]{-b+a x^2}}\right )}{2 \sqrt [4]{a} \sqrt [4]{-b x^2+a x^4}}+\frac {\sqrt {x} \sqrt [4]{-b+a x^2} \tanh ^{-1}\left (\frac {\sqrt [4]{a} \sqrt {x}}{\sqrt [4]{-b+a x^2}}\right )}{2 \sqrt [4]{a} \sqrt [4]{-b x^2+a x^4}}\right )+\frac {\left (\left (a-\sqrt {a^2+b}\right ) \sqrt {x} \sqrt [4]{-b+a x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt [4]{-a+\sqrt {a^2+b}}-\sqrt {-b+a \sqrt {-a+\sqrt {a^2+b}}} x^2} \, dx,x,\frac {\sqrt {x}}{\sqrt [4]{-b+a x^2}}\right )}{4 \left (-a+\sqrt {a^2+b}\right )^{3/4} \sqrt [4]{-b x^2+a x^4}}+\frac {\left (\left (a-\sqrt {a^2+b}\right ) \sqrt {x} \sqrt [4]{-b+a x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt [4]{-a+\sqrt {a^2+b}}+\sqrt {-b+a \sqrt {-a+\sqrt {a^2+b}}} x^2} \, dx,x,\frac {\sqrt {x}}{\sqrt [4]{-b+a x^2}}\right )}{4 \left (-a+\sqrt {a^2+b}\right )^{3/4} \sqrt [4]{-b x^2+a x^4}}+\frac {\left (\left (a-\sqrt {a^2+b}\right ) \sqrt {x} \sqrt [4]{-b+a x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt [4]{-a+\sqrt {a^2+b}}-\sqrt {b+a \sqrt {-a+\sqrt {a^2+b}}} x^2} \, dx,x,\frac {\sqrt {x}}{\sqrt [4]{-b+a x^2}}\right )}{4 \left (-a+\sqrt {a^2+b}\right )^{3/4} \sqrt [4]{-b x^2+a x^4}}+\frac {\left (\left (a-\sqrt {a^2+b}\right ) \sqrt {x} \sqrt [4]{-b+a x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt [4]{-a+\sqrt {a^2+b}}+\sqrt {b+a \sqrt {-a+\sqrt {a^2+b}}} x^2} \, dx,x,\frac {\sqrt {x}}{\sqrt [4]{-b+a x^2}}\right )}{4 \left (-a+\sqrt {a^2+b}\right )^{3/4} \sqrt [4]{-b x^2+a x^4}}+\frac {\left (\left (a+\sqrt {a^2+b}\right ) \sqrt {x} \sqrt [4]{-b+a x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt [4]{-a-\sqrt {a^2+b}}-\sqrt {-b+a \sqrt {-a-\sqrt {a^2+b}}} x^2} \, dx,x,\frac {\sqrt {x}}{\sqrt [4]{-b+a x^2}}\right )}{4 \left (-a-\sqrt {a^2+b}\right )^{3/4} \sqrt [4]{-b x^2+a x^4}}+\frac {\left (\left (a+\sqrt {a^2+b}\right ) \sqrt {x} \sqrt [4]{-b+a x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt [4]{-a-\sqrt {a^2+b}}+\sqrt {-b+a \sqrt {-a-\sqrt {a^2+b}}} x^2} \, dx,x,\frac {\sqrt {x}}{\sqrt [4]{-b+a x^2}}\right )}{4 \left (-a-\sqrt {a^2+b}\right )^{3/4} \sqrt [4]{-b x^2+a x^4}}+\frac {\left (\left (a+\sqrt {a^2+b}\right ) \sqrt {x} \sqrt [4]{-b+a x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt [4]{-a-\sqrt {a^2+b}}-\sqrt {b+a \sqrt {-a-\sqrt {a^2+b}}} x^2} \, dx,x,\frac {\sqrt {x}}{\sqrt [4]{-b+a x^2}}\right )}{4 \left (-a-\sqrt {a^2+b}\right )^{3/4} \sqrt [4]{-b x^2+a x^4}}+\frac {\left (\left (a+\sqrt {a^2+b}\right ) \sqrt {x} \sqrt [4]{-b+a x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt [4]{-a-\sqrt {a^2+b}}+\sqrt {b+a \sqrt {-a-\sqrt {a^2+b}}} x^2} \, dx,x,\frac {\sqrt {x}}{\sqrt [4]{-b+a x^2}}\right )}{4 \left (-a-\sqrt {a^2+b}\right )^{3/4} \sqrt [4]{-b x^2+a x^4}}\\ &=-\frac {\sqrt [8]{-a-\sqrt {a^2+b}} \sqrt {x} \sqrt [4]{-b+a x^2} \tan ^{-1}\left (\frac {\sqrt [4]{-b+a \sqrt {-a-\sqrt {a^2+b}}} \sqrt {x}}{\sqrt [8]{-a-\sqrt {a^2+b}} \sqrt [4]{-b+a x^2}}\right )}{4 \sqrt [4]{-b+a \sqrt {-a-\sqrt {a^2+b}}} \sqrt [4]{-b x^2+a x^4}}-\frac {\sqrt [8]{-a-\sqrt {a^2+b}} \sqrt {x} \sqrt [4]{-b+a x^2} \tan ^{-1}\left (\frac {\sqrt [4]{b+a \sqrt {-a-\sqrt {a^2+b}}} \sqrt {x}}{\sqrt [8]{-a-\sqrt {a^2+b}} \sqrt [4]{-b+a x^2}}\right )}{4 \sqrt [4]{b+a \sqrt {-a-\sqrt {a^2+b}}} \sqrt [4]{-b x^2+a x^4}}-\frac {\sqrt [8]{-a+\sqrt {a^2+b}} \sqrt {x} \sqrt [4]{-b+a x^2} \tan ^{-1}\left (\frac {\sqrt [4]{-b+a \sqrt {-a+\sqrt {a^2+b}}} \sqrt {x}}{\sqrt [8]{-a+\sqrt {a^2+b}} \sqrt [4]{-b+a x^2}}\right )}{4 \sqrt [4]{-b+a \sqrt {-a+\sqrt {a^2+b}}} \sqrt [4]{-b x^2+a x^4}}-\frac {\sqrt [8]{-a+\sqrt {a^2+b}} \sqrt {x} \sqrt [4]{-b+a x^2} \tan ^{-1}\left (\frac {\sqrt [4]{b+a \sqrt {-a+\sqrt {a^2+b}}} \sqrt {x}}{\sqrt [8]{-a+\sqrt {a^2+b}} \sqrt [4]{-b+a x^2}}\right )}{4 \sqrt [4]{b+a \sqrt {-a+\sqrt {a^2+b}}} \sqrt [4]{-b x^2+a x^4}}+2 \left (\frac {\sqrt {x} \sqrt [4]{-b+a x^2} \tan ^{-1}\left (\frac {\sqrt [4]{a} \sqrt {x}}{\sqrt [4]{-b+a x^2}}\right )}{2 \sqrt [4]{a} \sqrt [4]{-b x^2+a x^4}}+\frac {\sqrt {x} \sqrt [4]{-b+a x^2} \tanh ^{-1}\left (\frac {\sqrt [4]{a} \sqrt {x}}{\sqrt [4]{-b+a x^2}}\right )}{2 \sqrt [4]{a} \sqrt [4]{-b x^2+a x^4}}\right )-\frac {\sqrt [8]{-a-\sqrt {a^2+b}} \sqrt {x} \sqrt [4]{-b+a x^2} \tanh ^{-1}\left (\frac {\sqrt [4]{-b+a \sqrt {-a-\sqrt {a^2+b}}} \sqrt {x}}{\sqrt [8]{-a-\sqrt {a^2+b}} \sqrt [4]{-b+a x^2}}\right )}{4 \sqrt [4]{-b+a \sqrt {-a-\sqrt {a^2+b}}} \sqrt [4]{-b x^2+a x^4}}-\frac {\sqrt [8]{-a-\sqrt {a^2+b}} \sqrt {x} \sqrt [4]{-b+a x^2} \tanh ^{-1}\left (\frac {\sqrt [4]{b+a \sqrt {-a-\sqrt {a^2+b}}} \sqrt {x}}{\sqrt [8]{-a-\sqrt {a^2+b}} \sqrt [4]{-b+a x^2}}\right )}{4 \sqrt [4]{b+a \sqrt {-a-\sqrt {a^2+b}}} \sqrt [4]{-b x^2+a x^4}}-\frac {\sqrt [8]{-a+\sqrt {a^2+b}} \sqrt {x} \sqrt [4]{-b+a x^2} \tanh ^{-1}\left (\frac {\sqrt [4]{-b+a \sqrt {-a+\sqrt {a^2+b}}} \sqrt {x}}{\sqrt [8]{-a+\sqrt {a^2+b}} \sqrt [4]{-b+a x^2}}\right )}{4 \sqrt [4]{-b+a \sqrt {-a+\sqrt {a^2+b}}} \sqrt [4]{-b x^2+a x^4}}-\frac {\sqrt [8]{-a+\sqrt {a^2+b}} \sqrt {x} \sqrt [4]{-b+a x^2} \tanh ^{-1}\left (\frac {\sqrt [4]{b+a \sqrt {-a+\sqrt {a^2+b}}} \sqrt {x}}{\sqrt [8]{-a+\sqrt {a^2+b}} \sqrt [4]{-b+a x^2}}\right )}{4 \sqrt [4]{b+a \sqrt {-a+\sqrt {a^2+b}}} \sqrt [4]{-b x^2+a x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [F]  time = 2.73, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {a x^4+x^8}{\sqrt [4]{-b x^2+a x^4} \left (-b+2 a x^4+x^8\right )} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Integrate[(a*x^4 + x^8)/((-(b*x^2) + a*x^4)^(1/4)*(-b + 2*a*x^4 + x^8)),x]

[Out]

Integrate[(a*x^4 + x^8)/((-(b*x^2) + a*x^4)^(1/4)*(-b + 2*a*x^4 + x^8)), x]

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.00, size = 163, normalized size = 1.00 \begin {gather*} \frac {\tan ^{-1}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{-b x^2+a x^4}}\right )}{\sqrt [4]{a}}+\frac {\tanh ^{-1}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{-b x^2+a x^4}}\right )}{\sqrt [4]{a}}+\frac {1}{8} \text {RootSum}\left [a^4-2 a^3 b-b^3-4 a^3 \text {$\#$1}^4+4 a^2 b \text {$\#$1}^4+6 a^2 \text {$\#$1}^8-2 a b \text {$\#$1}^8-4 a \text {$\#$1}^{12}+\text {$\#$1}^{16}\&,\frac {-\log (x)+\log \left (\sqrt [4]{-b x^2+a x^4}-x \text {$\#$1}\right )}{\text {$\#$1}}\&\right ] \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(a*x^4 + x^8)/((-(b*x^2) + a*x^4)^(1/4)*(-b + 2*a*x^4 + x^8)),x]

[Out]

ArcTan[(a^(1/4)*x)/(-(b*x^2) + a*x^4)^(1/4)]/a^(1/4) + ArcTanh[(a^(1/4)*x)/(-(b*x^2) + a*x^4)^(1/4)]/a^(1/4) +
 RootSum[a^4 - 2*a^3*b - b^3 - 4*a^3*#1^4 + 4*a^2*b*#1^4 + 6*a^2*#1^8 - 2*a*b*#1^8 - 4*a*#1^12 + #1^16 & , (-L
og[x] + Log[(-(b*x^2) + a*x^4)^(1/4) - x*#1])/#1 & ]/8

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^8+a*x^4)/(a*x^4-b*x^2)^(1/4)/(x^8+2*a*x^4-b),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^8+a*x^4)/(a*x^4-b*x^2)^(1/4)/(x^8+2*a*x^4-b),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Eval
uation time: 2.8Unable to divide, perhaps due to rounding error%%%{-18014398509481984,[2,35,24,18]%%%}+%%%{108
086391056891904,[2,34,25,18]%%%}+%%%{17592186044416,[2,34,24,14]%%%}+%%%{-306244774661193728,[2,33,26,18]%%%}+
%%%{-126100789566373888,[2,33,25,18]%%%}+%%%{-96757023244288,[2,33,25,14]%%%}+%%%{-6442450944,[2,33,24,10]%%%}
+%%%{576460752303423488,[2,32,27,18]%%%}+%%%{756604737398243328,[2,32,26,18]%%%}+%%%{219902325555200,[2,32,26,
14]%%%}+%%%{123145302310912,[2,32,25,14]%%%}+%%%{34359738368,[2,32,25,10]%%%}+%%%{1048576,[2,32,24,6]%%%}+%%%{
-720575940379279360,[2,31,28,18]%%%}+%%%{-2143713422628356096,[2,31,27,18]%%%}+%%%{-299067162755072,[2,31,27,1
4]%%%}+%%%{-378302368699121664,[2,31,26,18]%%%}+%%%{-686095255732224,[2,31,26,14]%%%}+%%%{-67645734912,[2,31,2
6,10]%%%}+%%%{-45097156608,[2,31,25,10]%%%}+%%%{-5767168,[2,31,25,6]%%%}+%%%{-64,[2,31,24,2]%%%}+%%%{576460752
303423488,[2,30,29,18]%%%}+%%%{4179340454199820288,[2,30,28,18]%%%}+%%%{246290604621824,[2,30,28,14]%%%}+%%%{2
269814212194729984,[2,30,27,18]%%%}+%%%{1556908464930816,[2,30,27,14]%%%}+%%%{68719476736,[2,30,27,10]%%%}+%%%
{369435906932736,[2,30,26,14]%%%}+%%%{246960619520,[2,30,26,10]%%%}+%%%{11010048,[2,30,26,6]%%%}+%%%{7340032,[
2,30,25,6]%%%}+%%%{384,[2,30,25,2]%%%}+%%%{-288230376151711744,[2,29,30,18]%%%}+%%%{-5476377146882523136,[2,29
,29,18]%%%}+%%%{-70368744177664,[2,29,29,14]%%%}+%%%{-6395111470866104320,[2,29,28,18]%%%}+%%%{-21726349764853
76,[2,29,28,14]%%%}+%%%{-47244640256,[2,29,28,10]%%%}+%%%{-630503947831869440,[2,29,27,18]%%%}+%%%{-2093470139
285504,[2,29,27,14]%%%}+%%%{-488552529920,[2,29,27,10]%%%}+%%%{-8388608,[2,29,27,6]%%%}+%%%{-135291469824,[2,2
9,26,10]%%%}+%%%{-41943040,[2,29,26,6]%%%}+%%%{-832,[2,29,26,2]%%%}+%%%{-448,[2,29,25,2]%%%}+%%%{4611686018427
387904,[2,28,30,18]%%%}+%%%{13042424520864956416,[2,28,29,18]%%%}+%%%{1899956092796928,[2,28,29,14]%%%}+%%%{17
179869184,[2,28,29,10]%%%}+%%%{3783023686991216640,[2,28,28,18]%%%}+%%%{4714705859903488,[2,28,28,14]%%%}+%%%{
498216206336,[2,28,28,10]%%%}+%%%{2097152,[2,28,28,6]%%%}+%%%{615726511554560,[2,28,27,14]%%%}+%%%{76665166233
6,[2,28,27,10]%%%}+%%%{81788928,[2,28,27,6]%%%}+%%%{768,[2,28,27,2]%%%}+%%%{22020096,[2,28,26,6]%%%}+%%%{2816,
[2,28,26,2]%%%}+%%%{-2594073385365405696,[2,27,31,18]%%%}+%%%{-18122484900538875904,[2,27,30,18]%%%}+%%%{-5277
65581332480,[2,27,30,14]%%%}+%%%{-10466365534009032704,[2,27,29,18]%%%}+%%%{-6781787720122368,[2,27,29,14]%%%}
+%%%{-369367187456,[2,27,29,10]%%%}+%%%{-630503947831869440,[2,27,28,18]%%%}+%%%{-3571213767016448,[2,27,28,14
]%%%}+%%%{-1520418422784,[2,27,28,10]%%%}+%%%{-61865984,[2,27,28,6]%%%}+%%%{-256,[2,27,28,2]%%%}+%%%{-22548578
3040,[2,27,27,10]%%%}+%%%{-132120576,[2,27,27,6]%%%}+%%%{-6336,[2,27,27,2]%%%}+%%%{-1344,[2,27,26,2]%%%}+%%%{1
6140901064495857664,[2,26,31,18]%%%}+%%%{22698142121947299840,[2,26,30,18]%%%}+%%%{6429943999234048,[2,26,30,1
4]%%%}+%%%{146028888064,[2,26,30,10]%%%}+%%%{3783023686991216640,[2,26,29,18]%%%}+%%%{7881299347898368,[2,26,2
9,14]%%%}+%%%{1546188226560,[2,26,29,10]%%%}+%%%{14680064,[2,26,29,6]%%%}+%%%{615726511554560,[2,26,28,14]%%%}
+%%%{1337882312704,[2,26,28,10]%%%}+%%%{264241152,[2,26,28,6]%%%}+%%%{6016,[2,26,28,2]%%%}+%%%{36700160,[2,26,
27,6]%%%}+%%%{8960,[2,26,27,2]%%%}+%%%{-10520408729537478656,[2,25,32,18]%%%}+%%%{-34047213182920949760,[2,25,
31,18]%%%}+%%%{-1671257674219520,[2,25,31,14]%%%}+%%%{-9961962375743537152,[2,25,30,18]%%%}+%%%{-1175158027766
9888,[2,25,30,14]%%%}+%%%{-1270236577792,[2,25,30,10]%%%}+%%%{-378302368699121664,[2,25,29,18]%%%}+%%%{-369435
9069327360,[2,25,29,14]%%%}+%%%{-2645699854336,[2,25,29,10]%%%}+%%%{-196608000,[2,25,29,6]%%%}+%%%{-2048,[2,25
,29,2]%%%}+%%%{-225485783040,[2,25,28,10]%%%}+%%%{-234881024,[2,25,28,6]%%%}+%%%{-21120,[2,25,28,2]%%%}+%%%{-2
240,[2,25,27,2]%%%}+%%%{32137686940915859456,[2,24,32,18]%%%}+%%%{23706948438478290944,[2,24,31,18]%%%}+%%%{12
516840370601984,[2,24,31,14]%%%}+%%%{554050781184,[2,24,31,10]%%%}+%%%{2269814212194729984,[2,24,30,18]%%%}+%%
%{7758154045587456,[2,24,30,14]%%%}+%%%{2641404887040,[2,24,30,10]%%%}+%%%{42467328,[2,24,30,6]%%%}+%%%{369435
906932736,[2,24,29,14]%%%}+%%%{1428076625920,[2,24,29,10]%%%}+%%%{484442112,[2,24,29,6]%%%}+%%%{20736,[2,24,29
,2]%%%}+%%%{36700160,[2,24,28,6]%%%}+%%%{16128,[2,24,28,2]%%%}+%%%{-25364273101350633472,[2,23,33,18]%%%}+%%%{
-39613662322350882816,[2,23,32,18]%%%}+%%%{-2788361488039936,[2,23,32,14]%%%}+%%%{-5170132372221329408,[2,23,3
1,18]%%%}+%%%{-12068239626469376,[2,23,31,14]%%%}+%%%{-2520072060928,[2,23,31,10]%%%}+%%%{-126100789566373888,
[2,23,30,18]%%%}+%%%{-2339760743907328,[2,23,30,14]%%%}+%%%{-2780991324160,[2,23,30,10]%%%}+%%%{-348127232,[2,
23,30,6]%%%}+%%%{-7232,[2,23,30,2]%%%}+%%%{-135291469824,[2,23,29,10]%%%}+%%%{-256901120,[2,23,29,6]%%%}+%%%{-
40320,[2,23,29,2]%%%}+%%%{-2240,[2,23,28,2]%%%}+%%%{39307417547689689088,[2,22,33,18]%%%}+%%%{1462769158969937
1008,[2,22,32,18]%%%}+%%%{15463531533041664,[2,22,32,14]%%%}+%%%{1234803097600,[2,22,32,10]%%%}+%%%{7566047373
98243328,[2,22,31,18]%%%}+%%%{4310085580881920,[2,22,31,14]%%%}+%%%{2615635083264,[2,22,31,10]%%%}+%%%{6186598
4,[2,22,31,6]%%%}+%%%{123145302310912,[2,22,30,14]%%%}+%%%{947040288768,[2,22,30,10]%%%}+%%%{550502400,[2,22,3
0,6]%%%}+%%%{41216,[2,22,30,2]%%%}+%%%{22020096,[2,22,29,6]%%%}+%%%{17920,[2,22,29,2]%%%}+%%%{-403702670597491
26144,[2,21,34,18]%%%}+%%%{-29129282389832368128,[2,21,33,18]%%%}+%%%{-2269391999729664,[2,21,33,14]%%%}+%%%{-
882705526964617216,[2,21,32,18]%%%}+%%%{-7019282231721984,[2,21,32,14]%%%}+%%%{-3180423282688,[2,21,32,10]%%%}
+%%%{-18014398509481984,[2,21,31,18]%%%}+%%%{-862017116176384,[2,21,31,14]%%%}+%%%{-1758789107712,[2,21,31,10]
%%%}+%%%{-367001600,[2,21,31,6]%%%}+%%%{-14784,[2,21,31,2]%%%}+%%%{-45097156608,[2,21,30,10]%%%}+%%%{-17616076
8,[2,21,30,6]%%%}+%%%{-48384,[2,21,30,2]%%%}+%%%{-1344,[2,21,29,2]%%%}+%%%{29003181600265994240,[2,20,34,18]%%
%}+%%%{4539628424389459968,[2,20,33,18]%%%}+%%%{12683966138023936,[2,20,33,14]%%%}+%%%{1788853878784,[2,20,33,
10]%%%}+%%%{108086391056891904,[2,20,32,18]%%%}+%%%{985162418487296,[2,20,32,14]%%%}+%%%{1352914698240,[2,20,3
2,10]%%%}+%%%{36700160,[2,20,32,6]%%%}+%%%{17592186044416,[2,20,31,14]%%%}+%%%{375809638400,[2,20,31,10]%%%}+%
%%{396361728,[2,20,31,6]%%%}+%%%{51968,[2,20,31,2]%%%}+%%%{7340032,[2,20,30,6]%%%}+%%%{12544,[2,20,30,2]%%%}+%
%%{-44513578716929982464,[2,19,35,18]%%%}+%%%{-13240582904469258240,[2,19,34,18]%%%}+%%%{123145302310912,[2,19
,34,14]%%%}+%%%{450359962737049600,[2,19,33,18]%%%}+%%%{-1600888930041856,[2,19,33,14]%%%}+%%%{-2660732239872,
[2,19,33,10]%%%}+%%%{-158329674399744,[2,19,32,14]%%%}+%%%{-601295421440,[2,19,32,10]%%%}+%%%{-220200960,[2,19
,32,6]%%%}+%%%{-19264,[2,19,32,2]%%%}+%%%{-6442450944,[2,19,31,10]%%%}+%%%{-73400320,[2,19,31,6]%%%}+%%%{-3763
2,[2,19,31,2]%%%}+%%%{-448,[2,19,30,2]%%%}+%%%{10340264744442658816,[2,18,35,18]%%%}+%%%{72057594037927936,[2,
18,34,18]%%%}+%%%{7142427534032896,[2,18,34,14]%%%}+%%%{1758789107712,[2,18,34,10]%%%}+%%%{-211106232532992,[2
,18,33,14]%%%}+%%%{90194313216,[2,18,33,10]%%%}+%%%{-22020096,[2,18,33,6]%%%}+%%%{79456894976,[2,18,32,10]%%%}
+%%%{176160768,[2,18,32,6]%%%}+%%%{43008,[2,18,32,2]%%%}+%%%{1048576,[2,18,31,6]%%%}+%%%{5376,[2,18,31,2]%%%}+
%%%{-34677717130752819200,[2,17,36,18]%%%}+%%%{-3620894100405878784,[2,17,35,18]%%%}+%%%{2339760743907328,[2,1
7,35,14]%%%}+%%%{252201579132747776,[2,17,34,18]%%%}+%%%{562949953421312,[2,17,34,14]%%%}+%%%{-1503238553600,[
2,17,34,10]%%%}+%%%{-8796093022208,[2,17,33,14]%%%}+%%%{-60129542144,[2,17,33,10]%%%}+%%%{-51380224,[2,17,33,6
]%%%}+%%%{-16576,[2,17,33,2]%%%}+%%%{-16777216,[2,17,32,6]%%%}+%%%{-18816,[2,17,32,2]%%%}+%%%{-64,[2,17,31,2]%
%%}+%%%{-1693353459891306496,[2,16,36,18]%%%}+%%%{-360287970189639680,[2,16,35,18]%%%}+%%%{2955487255461888,[2
,16,35,14]%%%}+%%%{1187558457344,[2,16,35,10]%%%}+%%%{-167125767421952,[2,16,34,14]%%%}+%%%{-322122547200,[2,1
6,34,10]%%%}+%%%{-58720256,[2,16,34,6]%%%}+%%%{6442450944,[2,16,33,10]%%%}+%%%{44040192,[2,16,33,6]%%%}+%%%{23
296,[2,16,33,2]%%%}+%%%{1280,[2,16,32,2]%%%}+%%%{-19077248021541421056,[2,15,37,18]%%%}+%%%{-81064793292668928
0,[2,15,36,18]%%%}+%%%{2638827906662400,[2,15,36,14]%%%}+%%%{36028797018963968,[2,15,35,18]%%%}+%%%{4749890231
99232,[2,15,35,14]%%%}+%%%{-588410519552,[2,15,35,10]%%%}+%%%{22548578304,[2,15,34,10]%%%}+%%%{20971520,[2,15,
34,6]%%%}+%%%{-9408,[2,15,34,2]%%%}+%%%{-1572864,[2,15,33,6]%%%}+%%%{-5760,[2,15,33,2]%%%}+%%%{-37109660929532
88704,[2,14,37,18]%%%}+%%%{-72057594037927936,[2,14,36,18]%%%}+%%%{1037938976620544,[2,14,36,14]%%%}+%%%{54331
3362944,[2,14,36,10]%%%}+%%%{-26388279066624,[2,14,35,14]%%%}+%%%{-193273528320,[2,14,35,10]%%%}+%%%{-49283072
,[2,14,35,6]%%%}+%%%{4718592,[2,14,34,6]%%%}+%%%{7936,[2,14,34,2]%%%}+%%%{128,[2,14,33,2]%%%}+%%%{-72598025993
21239552,[2,13,38,18]%%%}+%%%{-342273571680157696,[2,13,37,18]%%%}+%%%{1565704557953024,[2,13,37,14]%%%}+%%%{1
14349209288704,[2,13,36,14]%%%}+%%%{-173946175488,[2,13,36,10]%%%}+%%%{5368709120,[2,13,35,10]%%%}+%%%{1887436
8,[2,13,35,6]%%%}+%%%{-3392,[2,13,35,2]%%%}+%%%{-960,[2,13,34,2]%%%}+%%%{-1765411053929234432,[2,12,38,18]%%%}
+%%%{334251534843904,[2,12,37,14]%%%}+%%%{161061273600,[2,12,37,10]%%%}+%%%{-47244640256,[2,12,36,10]%%%}+%%%{
-22020096,[2,12,36,6]%%%}+%%%{1536,[2,12,35,2]%%%}+%%%{-1819454249457680384,[2,11,39,18]%%%}+%%%{-126100789566
373888,[2,11,38,18]%%%}+%%%{545357767376896,[2,11,38,14]%%%}+%%%{8796093022208,[2,11,37,14]%%%}+%%%{-450971566
08,[2,11,37,10]%%%}+%%%{5242880,[2,11,36,6]%%%}+%%%{-704,[2,11,36,2]%%%}+%%%{-64,[2,11,35,2]%%%}+%%%{-39631676
7208603648,[2,10,39,18]%%%}+%%%{79164837199872,[2,10,38,14]%%%}+%%%{27917287424,[2,10,38,10]%%%}+%%%{-42949672
96,[2,10,37,10]%%%}+%%%{-5242880,[2,10,37,6]%%%}+%%%{128,[2,10,36,2]%%%}+%%%{-270215977642229760,[2,9,40,18]%%
%}+%%%{-18014398509481984,[2,9,39,18]%%%}+%%%{105553116266496,[2,9,39,14]%%%}+%%%{-9663676416,[2,9,38,10]%%%}+
%%%{524288,[2,9,37,6]%%%}+%%%{-64,[2,9,37,2]%%%}+%%%{-36028797018963968,[2,8,40,18]%%%}+%%%{8796093022208,[2,8
,39,14]%%%}+%%%{2147483648,[2,8,39,10]%%%}+%%%{-524288,[2,8,38,6]%%%}+%%%{-18014398509481984,[2,7,41,18]%%%}+%
%%{8796093022208,[2,7,40,14]%%%}+%%%{-1073741824,[2,7,39,10]%%%}+%%%{-9223372036854775808,[1,39,22,21]%%%}+%%%
{83010348331692982272,[1,38,23,21]%%%}+%%%{11258999068426240,[1,38,22,17]%%%}+%%%{-313594649253062377472,[1,37
,24,21]%%%}+%%%{-64563604257983430656,[1,37,23,21]%%%}+%%%{-90071992547409920,[1,37,23,17]%%%}+%%%{-5497558138
880,[1,37,22,13]%%%}+%%%{664082786653543858176,[1,36,25,21]%%%}+%%%{599519182395560427520,[1,36,24,21]%%%}+%%%
{292733975779082240,[1,36,24,17]%%%}+%%%{78812993478983680,[1,36,23,17]%%%}+%%%{40132174413824,[1,36,23,13]%%%
}+%%%{1342177280,[1,36,22,9]%%%}+%%%{-885443715538058477568,[1,35,26,21]%%%}+%%%{-2315066381250548727808,[1,35
,25,21]%%%}+%%%{-504403158265495552,[1,35,25,17]%%%}+%%%{-193690812773950291968,[1,35,24,21]%%%}+%%%{-65077014
6155036672,[1,35,24,17]%%%}+%%%{-114349209288704,[1,35,24,13]%%%}+%%%{-38482906972160,[1,35,23,13]%%%}+%%%{-92
61023232,[1,35,23,9]%%%}+%%%{-163840,[1,35,22,5]%%%}+%%%{737869762948382064640,[1,34,27,21]%%%}+%%%{4989844271
938433712128,[1,34,26,21]%%%}+%%%{504403158265495552,[1,34,26,17]%%%}+%%%{1872344523481519489024,[1,34,25,21]%
%%}+%%%{2161727821137838080,[1,34,25,17]%%%}+%%%{162727720910848,[1,34,25,13]%%%}+%%%{236438980436951040,[1,34
,24,17]%%%}+%%%{290271069732864,[1,34,24,13]%%%}+%%%{23890755584,[1,34,24,9]%%%}+%%%{9395240960,[1,34,23,9]%%%
}+%%%{1114112,[1,34,23,5]%%%}+%%%{8,[1,34,22,1]%%%}+%%%{-295147905179352825856,[1,33,28,21]%%%}+%%%{-682529530
7272534097920,[1,33,27,21]%%%}+%%%{-288230376151711744,[1,33,27,17]%%%}+%%%{-7424814489668094525440,[1,33,26,2
1]%%%}+%%%{-3774016487736475648,[1,33,26,17]%%%}+%%%{-123145302310912,[1,33,26,13]%%%}+%%%{-322818021289917153
280,[1,33,25,21]%%%}+%%%{-2033375231757778944,[1,33,25,17]%%%}+%%%{-844974685945856,[1,33,25,13]%%%}+%%%{-2845
4158336,[1,33,25,9]%%%}+%%%{-115448720916480,[1,33,24,13]%%%}+%%%{-67108864000,[1,33,24,9]%%%}+%%%{-2752512,[1
,33,24,5]%%%}+%%%{-1146880,[1,33,23,5]%%%}+%%%{-56,[1,33,23,1]%%%}+%%%{5902958103587056517120,[1,32,28,21]%%%}
+%%%{72057594037927936,[1,32,28,17]%%%}+%%%{16316145133196098404352,[1,32,27,21]%%%}+%%%{3814548884382810112,[
1,32,27,17]%%%}+%%%{43980465111040,[1,32,27,13]%%%}+%%%{3292743817157154963456,[1,32,26,21]%%%}+%%%{6937795225
964249088,[1,32,26,17]%%%}+%%%{1212211569623040,[1,32,26,13]%%%}+%%%{16106127360,[1,32,26,9]%%%}+%%%{394064967
394918400,[1,32,25,17]%%%}+%%%{908196604542976,[1,32,25,13]%%%}+%%%{176898965504,[1,32,25,9]%%%}+%%%{2883584,[
1,32,25,5]%%%}+%%%{28185722880,[1,32,24,9]%%%}+%%%{8093696,[1,32,24,5]%%%}+%%%{144,[1,32,24,1]%%%}+%%%{56,[1,3
2,23,1]%%%}+%%%{-2361183241434822606848,[1,31,29,21]%%%}+%%%{-23003089859915810865152,[1,31,28,21]%%%}+%%%{-22
06763817411543040,[1,31,28,17]%%%}+%%%{-13493793289918537007104,[1,31,27,21]%%%}+%%%{-12281316183839342592,[1,
31,27,17]%%%}+%%%{-913694162681856,[1,31,27,13]%%%}+%%%{-4294967296,[1,31,27,9]%%%}+%%%{-322818021289917153280
,[1,31,26,21]%%%}+%%%{-3578109903945859072,[1,31,26,17]%%%}+%%%{-2714694208978944,[1,31,26,13]%%%}+%%%{-210856
050688,[1,31,26,9]%%%}+%%%{-1048576,[1,31,26,5]%%%}+%%%{-192414534860800,[1,31,25,13]%%%}+%%%{-210453397504,[1
,31,25,9]%%%}+%%%{-20480000,[1,31,25,5]%%%}+%%%{-160,[1,31,25,1]%%%}+%%%{-3440640,[1,31,24,5]%%%}+%%%{-408,[1,
31,24,1]%%%}+%%%{-147573952589676412928,[1,30,30,21]%%%}+%%%{20881714291439212429312,[1,30,29,21]%%%}+%%%{5224
17556774977536,[1,30,29,17]%%%}+%%%{30261883652920519426048,[1,30,28,21]%%%}+%%%{12540273162413146112,[1,30,28
,17]%%%}+%%%{314460325543936,[1,30,28,13]%%%}+%%%{3550998234189088686080,[1,30,27,21]%%%}+%%%{1262584155533318
5536,[1,30,27,17]%%%}+%%%{3924706755346432,[1,30,27,13]%%%}+%%%{115964116992,[1,30,27,9]%%%}+%%%{3940649673949
18400,[1,30,26,17]%%%}+%%%{1600888930041856,[1,30,26,13]%%%}+%%%{569888473088,[1,30,26,9]%%%}+%%%{21364736,[1,
30,26,5]%%%}+%%%{64,[1,30,26,1]%%%}+%%%{46976204800,[1,30,25,9]%%%}+%%%{25460736,[1,30,25,5]%%%}+%%%{1080,[1,3
0,25,1]%%%}+%%%{168,[1,30,24,1]%%%}+%%%{-8337928321316717330432,[1,29,30,21]%%%}+%%%{36028797018963968,[1,29,3
0,17]%%%}+%%%{-44235292288755504775168,[1,29,29,21]%%%}+%%%{-7367888990378131456,[1,29,29,17]%%%}+%%%{21990232
555520,[1,29,29,13]%%%}+%%%{-15172447000626106204160,[1,29,28,21]%%%}+%%%{-22655357925487280128,[1,29,28,17]%%
%}+%%%{-2929648732209152,[1,29,28,13]%%%}+%%%{-29527900160,[1,29,28,9]%%%}+%%%{-193690812773950291968,[1,29,27
,21]%%%}+%%%{-3861836680470200320,[1,29,27,17]%%%}+%%%{-4948901836619776,[1,29,27,13]%%%}+%%%{-678202179584,[1
,29,27,9]%%%}+%%%{-6946816,[1,29,27,5]%%%}+%%%{-192414534860800,[1,29,26,13]%%%}+%%%{-372051542016,[1,29,26,9]
%%%}+%%%{-66387968,[1,29,26,5]%%%}+%%%{-1208,[1,29,26,1]%%%}+%%%{-5734400,[1,29,25,5]%%%}+%%%{-1288,[1,29,25,1
]%%%}+%%%{-1328165573307087716352,[1,28,31,21]%%%}+%%%{42907126715448417058816,[1,28,30,21]%%%}+%%%{1594274268
089155584,[1,28,30,17]%%%}+%%%{34670655486537102262272,[1,28,29,21]%%%}+%%%{23308379871456002048,[1,28,29,17]%
%%}+%%%{949978046398464,[1,28,29,13]%%%}+%%%{-2147483648,[1,28,29,9]%%%}+%%%{2388853357545386934272,[1,28,28,2
1]%%%}+%%%{14233626622304452608,[1,28,28,17]%%%}+%%%{7197403115421696,[1,28,28,13]%%%}+%%%{356213850112,[1,28,
28,9]%%%}+%%%{-524288,[1,28,28,5]%%%}+%%%{236438980436951040,[1,28,27,17]%%%}+%%%{1731730813747200,[1,28,27,13
]%%%}+%%%{1042871746560,[1,28,27,9]%%%}+%%%{68714496,[1,28,27,5]%%%}+%%%{448,[1,28,27,1]%%%}+%%%{46976204800,[
1,28,26,9]%%%}+%%%{45187072,[1,28,26,5]%%%}+%%%{3536,[1,28,26,1]%%%}+%%%{280,[1,28,25,1]%%%}+%%%{-170816850122
55044796416,[1,27,31,21]%%%}+%%%{324259173170675712,[1,27,31,17]%%%}+%%%{-52932932119509558362112,[1,27,30,21]
%%%}+%%%{-13990432242426445824,[1,27,30,17]%%%}+%%%{182518930210816,[1,27,30,13]%%%}+%%%{-10782121911083232919
552,[1,27,29,21]%%%}+%%%{-25803374065019256832,[1,27,29,17]%%%}+%%%{-5260613383094272,[1,27,29,13]%%%}+%%%{-84
288733184,[1,27,29,9]%%%}+%%%{-64563604257983430656,[1,27,28,21]%%%}+%%%{-2600828784806461440,[1,27,28,17]%%%}
+%%%{-5595414673752064,[1,27,28,13]%%%}+%%%{-1233192484864,[1,27,28,9]%%%}+%%%{-18481152,[1,27,28,5]%%%}+%%%{3
2,[1,27,28,1]%%%}+%%%{-115448720916480,[1,27,27,13]%%%}+%%%{-403995361280,[1,27,27,9]%%%}+%%%{-122486784,[1,27
,27,5]%%%}+%%%{-3984,[1,27,27,1]%%%}+%%%{-5734400,[1,27,26,5]%%%}+%%%{-2296,[1,27,26,1]%%%}+%%%{-5386449269523
189071872,[1,26,32,21]%%%}+%%%{56566940702030340030464,[1,26,31,21]%%%}+%%%{2580562586483294208,[1,26,31,17]%%
%}+%%%{24856987639323620802560,[1,26,30,21]%%%}+%%%{26523950005398536192,[1,26,30,17]%%%}+%%%{1536567499816960
,[1,26,30,13]%%%}+%%%{-18253611008,[1,26,30,9]%%%}+%%%{968454063869751459840,[1,26,29,21]%%%}+%%%{101668761587
88894720,[1,26,29,17]%%%}+%%%{8142983115309056,[1,26,29,13]%%%}+%%%{598342631424,[1,26,29,9]%%%}+%%%{-4063232,
[1,26,29,5]%%%}+%%%{78812993478983680,[1,26,28,17]%%%}+%%%{1169880371953664,[1,26,28,13]%%%}+%%%{1185679409152
,[1,26,28,9]%%%}+%%%{124977152,[1,26,28,5]%%%}+%%%{1312,[1,26,28,1]%%%}+%%%{28185722880,[1,26,27,9]%%%}+%%%{49
315840,[1,26,27,5]%%%}+%%%{6608,[1,26,27,1]%%%}+%%%{280,[1,26,26,1]%%%}+%%%{-22505027769925652971520,[1,25,32,
21]%%%}+%%%{1315051091192184832,[1,25,32,17]%%%}+%%%{-39964871035691743576064,[1,25,31,21]%%%}+%%%{-1647641923
6734959616,[1,25,31,17]%%%}+%%%{671801604571136,[1,25,31,13]%%%}+%%%{-4713143110832790437888,[1,25,30,21]%%%}+
%%%{-18394952677994790912,[1,25,30,17]%%%}+%%%{-5683375603974144,[1,25,30,13]%%%}+%%%{-124419833856,[1,25,30,9
]%%%}+%%%{-9223372036854775808,[1,25,29,21]%%%}+%%%{-1056094112618381312,[1,25,29,17]%%%}+%%%{-401761548789350
4,[1,25,29,13]%%%}+%%%{-1379221372928,[1,25,29,9]%%%}+%%%{-22773760,[1,25,29,5]%%%}+%%%{256,[1,25,29,1]%%%}+%%
%{-38482906972160,[1,25,28,13]%%%}+%%%{-274341036032,[1,25,28,9]%%%}+%%%{-140836864,[1,25,28,5]%%%}+%%%{-7504,
[1,25,28,1]%%%}+%%%{-3440640,[1,25,27,5]%%%}+%%%{-2520,[1,25,27,1]%%%}+%%%{-12986507827891524337664,[1,24,33,2
1]%%%}+%%%{49907666091421191897088,[1,24,32,21]%%%}+%%%{2191001218715746304,[1,24,32,17]%%%}+%%%{1052386749405
1299196928,[1,24,31,21]%%%}+%%%{18394952677994790912,[1,24,31,17]%%%}+%%%{1337006139375616,[1,24,31,13]%%%}+%%
%{-69256347648,[1,24,31,9]%%%}+%%%{212137556847659843584,[1,24,30,21]%%%}+%%%{4492340628302069760,[1,24,30,17]
%%%}+%%%{5764739464429568,[1,24,30,13]%%%}+%%%{573109698560,[1,24,30,9]%%%}+%%%{-13762560,[1,24,30,5]%%%}+%%%{
11258999068426240,[1,24,29,17]%%%}+%%%{477188046454784,[1,24,29,13]%%%}+%%%{858725023744,[1,24,29,9]%%%}+%%%{1
39919360,[1,24,29,5]%%%}+%%%{2008,[1,24,29,1]%%%}+%%%{9395240960,[1,24,28,9]%%%}+%%%{33718272,[1,24,28,5]%%%}+
%%%{7728,[1,24,28,1]%%%}+%%%{168,[1,24,27,1]%%%}+%%%{-20153067900527685140480,[1,23,33,21]%%%}+%%%{31705341376
68829184,[1,23,33,17]%%%}+%%%{-17884118379461410291712,[1,23,32,21]%%%}+%%%{-12247539186634063872,[1,23,32,17]
%%%}+%%%{1438710964944896,[1,23,32,13]%%%}+%%%{-1152921504606846976000,[1,23,31,21]%%%}+%%%{-77709611570277908
48,[1,23,31,17]%%%}+%%%{-3594303511199744,[1,23,31,13]%%%}+%%%{-89657442304,[1,23,31,9]%%%}+%%%{-2319353808095
80544,[1,23,30,17]%%%}+%%%{-1793303464902656,[1,23,30,13]%%%}+%%%{-960193626112,[1,23,30,9]%%%}+%%%{-5275648,[
1,23,30,5]%%%}+%%%{904,[1,23,30,1]%%%}+%%%{-5497558138880,[1,23,29,13]%%%}+%%%{-112742891520,[1,23,29,9]%%%}+%
%%{-103677952,[1,23,29,5]%%%}+%%%{-8848,[1,23,29,1]%%%}+%%%{-1146880,[1,23,28,5]%%%}+%%%{-1736,[1,23,28,1]%%%}
+%%%{-20669576734591552585728,[1,22,34,21]%%%}+%%%{29892948771446328393728,[1,22,33,21]%%%}+%%%{58771975137184
9728,[1,22,33,17]%%%}+%%%{2019918476071195901952,[1,22,32,21]%%%}+%%%{6793680037888393216,[1,22,32,17]%%%}+%%%
{415615395299328,[1,22,32,13]%%%}+%%%{-154350387200,[1,22,32,9]%%%}+%%%{18446744073709551616,[1,22,31,21]%%%}+
%%%{1128151706656309248,[1,22,31,17]%%%}+%%%{2424423139246080,[1,22,31,13]%%%}+%%%{268703891456,[1,22,31,9]%%%
}+%%%{-26574848,[1,22,31,5]%%%}+%%%{105553116266496,[1,22,30,13]%%%}+%%%{388962975744,[1,22,30,9]%%%}+%%%{9771
4176,[1,22,30,5]%%%}+%%%{1512,[1,22,30,1]%%%}+%%%{1342177280,[1,22,29,9]%%%}+%%%{13991936,[1,22,29,5]%%%}+%%%{
5824,[1,22,29,1]%%%}+%%%{56,[1,22,28,1]%%%}+%%%{-12977284455854669561856,[1,21,34,21]%%%}+%%%{5046283382468640
768,[1,21,34,17]%%%}+%%%{-3403424281599412273152,[1,21,33,21]%%%}+%%%{-5532672142224654336,[1,21,33,17]%%%}+%%
%{1973623371857920,[1,21,33,13]%%%}+%%%{-119903836479112085504,[1,21,32,21]%%%}+%%%{-1528972073492283392,[1,21
,32,17]%%%}+%%%{-1031341906853888,[1,21,32,13]%%%}+%%%{-7516192768,[1,21,32,9]%%%}+%%%{-20266198323167232,[1,2
1,31,17]%%%}+%%%{-460695372038144,[1,21,31,13]%%%}+%%%{-392721072128,[1,21,31,9]%%%}+%%%{22708224,[1,21,31,5]%
%%}+%%%{1848,[1,21,31,1]%%%}+%%%{-25232932864,[1,21,30,9]%%%}+%%%{-48168960,[1,21,30,5]%%%}+%%%{-6720,[1,21,30
,1]%%%}+%%%{-163840,[1,21,29,5]%%%}+%%%{-728,[1,21,29,1]%%%}+%%%{-22790952303068151021568,[1,20,35,21]%%%}+%%%
{12165627716611449290752,[1,20,34,21]%%%}+%%%{-488640559569698816,[1,20,34,17]%%%}+%%%{-175244068700240740352,
[1,20,33,21]%%%}+%%%{267964177828544512,[1,20,33,17]%%%}+%%%{-307863255777280,[1,20,33,13]%%%}+%%%{-2236067348
48,[1,20,33,9]%%%}+%%%{128352589380059136,[1,20,32,17]%%%}+%%%{485984139476992,[1,20,32,13]%%%}+%%%{-169114337
28,[1,20,32,9]%%%}+%%%{-31883264,[1,20,32,5]%%%}+%%%{9345848836096,[1,20,31,13]%%%}+%%%{102810779648,[1,20,31,
9]%%%}+%%%{40370176,[1,20,31,5]%%%}+%%%{56,[1,20,31,1]%%%}+%%%{3178496,[1,20,30,5]%%%}+%%%{2800,[1,20,30,1]%%%
}+%%%{8,[1,20,29,1]%%%}+%%%{-6686944726719712460800,[1,19,35,21]%%%}+%%%{5564197339616247808,[1,19,35,17]%%%}+
%%%{728646390911527288832,[1,19,34,21]%%%}+%%%{-1344324488770093056,[1,19,34,17]%%%}+%%%{1793303464902656,[1,1
9,34,13]%%%}+%%%{87820192733724672,[1,19,33,17]%%%}+%%%{184717953466368,[1,19,33,13]%%%}+%%%{33822867456,[1,19
,33,9]%%%}+%%%{-56075093016576,[1,19,32,13]%%%}+%%%{-73551314944,[1,19,32,9]%%%}+%%%{34177024,[1,19,32,5]%%%}+
%%%{2408,[1,19,32,1]%%%}+%%%{-2281701376,[1,19,31,9]%%%}+%%%{-13303808,[1,19,31,5]%%%}+%%%{-3248,[1,19,31,1]%%
%}+%%%{-168,[1,19,30,1]%%%}+%%%{-17754991170945443430400,[1,18,36,21]%%%}+%%%{3384977537525702721536,[1,18,35,
21]%%%}+%%%{-258956978573803520,[1,18,35,17]%%%}+%%%{-147573952589676412928,[1,18,34,21]%%%}+%%%{-898468125660
413952,[1,18,34,17]%%%}+%%%{-363938348793856,[1,18,34,13]%%%}+%%%{-219848638464,[1,18,34,9]%%%}+%%%{2251799813
685248,[1,18,33,17]%%%}+%%%{-15393162788864,[1,18,33,13]%%%}+%%%{-94757715968,[1,18,33,9]%%%}+%%%{-24084480,[1
,18,33,5]%%%}+%%%{13421772800,[1,18,32,9]%%%}+%%%{7929856,[1,18,32,5]%%%}+%%%{-952,[1,18,32,1]%%%}+%%%{294912,
[1,18,31,5]%%%}+%%%{816,[1,18,31,1]%%%}+%%%{-3200510096788607205376,[1,17,36,21]%%%}+%%%{4334714641344102400,[
1,17,36,17]%%%}+%%%{562625694248141324288,[1,17,35,21]%%%}+%%%{-141863388262170624,[1,17,35,17]%%%}+%%%{106982
4813826048,[1,17,35,13]%%%}+%%%{92323792361095168,[1,17,34,17]%%%}+%%%{256186209271808,[1,17,34,13]%%%}+%%%{16
374562816,[1,17,34,9]%%%}+%%%{-1649267441664,[1,17,33,13]%%%}+%%%{4294967296,[1,17,33,9]%%%}+%%%{23953408,[1,1
7,33,5]%%%}+%%%{2072,[1,17,33,1]%%%}+%%%{-1900544,[1,17,32,5]%%%}+%%%{-944,[1,17,32,1]%%%}+%%%{-16,[1,17,31,1]
%%%}+%%%{-9767550987029207580672,[1,16,37,21]%%%}+%%%{673306158690398633984,[1,16,36,21]%%%}+%%%{3175037737296
19968,[1,16,36,17]%%%}+%%%{-18446744073709551616,[1,16,35,21]%%%}+%%%{-385057768140177408,[1,16,35,17]%%%}+%%%
{-131941395333120,[1,16,35,13]%%%}+%%%{-148444807168,[1,16,35,9]%%%}+%%%{-23639499997184,[1,16,34,13]%%%}+%%%{
-51271172096,[1,16,34,9]%%%}+%%%{-10780672,[1,16,34,5]%%%}+%%%{536870912,[1,16,33,9]%%%}+%%%{-196608,[1,16,33,
5]%%%}+%%%{-888,[1,16,33,1]%%%}+%%%{128,[1,16,32,1]%%%}+%%%{-1429622665712490250240,[1,15,37,21]%%%}+%%%{23846
56002692677632,[1,15,37,17]%%%}+%%%{119903836479112085504,[1,15,36,21]%%%}+%%%{-38280596832649216,[1,15,36,17]
%%%}+%%%{391426139488256,[1,15,36,13]%%%}+%%%{11258999068426240,[1,15,35,17]%%%}+%%%{83562883710976,[1,15,35,1
3]%%%}+%%%{-6979321856,[1,15,35,9]%%%}+%%%{3892314112,[1,15,34,9]%%%}+%%%{9338880,[1,15,34,5]%%%}+%%%{1176,[1,
15,34,1]%%%}+%%%{-98304,[1,15,33,5]%%%}+%%%{-144,[1,15,33,1]%%%}+%%%{-3717018930852474650624,[1,14,38,21]%%%}+
%%%{101457092405402533888,[1,14,37,21]%%%}+%%%{412079365904400384,[1,14,37,17]%%%}+%%%{-67553994410557440,[1,1
4,36,17]%%%}+%%%{-4398046511104,[1,14,36,13]%%%}+%%%{-67914170368,[1,14,36,9]%%%}+%%%{-2748779069440,[1,14,35,
13]%%%}+%%%{-12079595520,[1,14,35,9]%%%}+%%%{-2129920,[1,14,35,5]%%%}+%%%{-327680,[1,14,34,5]%%%}+%%%{-392,[1,
14,34,1]%%%}+%%%{8,[1,14,33,1]%%%}+%%%{-488838717953303117824,[1,13,38,21]%%%}+%%%{907475324915154944,[1,13,38
,17]%%%}+%%%{9223372036854775808,[1,13,37,21]%%%}+%%%{-24769797950537728,[1,13,37,17]%%%}+%%%{67070209294336,[
1,13,37,13]%%%}+%%%{11544872091648,[1,13,36,13]%%%}+%%%{-9126805504,[1,13,36,9]%%%}+%%%{402653184,[1,13,35,9]%
%%}+%%%{1933312,[1,13,35,5]%%%}+%%%{424,[1,13,35,1]%%%}+%%%{-8,[1,13,34,1]%%%}+%%%{-931560575722332356608,[1,1
2,39,21]%%%}+%%%{9223372036854775808,[1,12,38,21]%%%}+%%%{200410183417987072,[1,12,38,17]%%%}+%%%{-45035996273
70496,[1,12,37,17]%%%}+%%%{8796093022208,[1,12,37,13]%%%}+%%%{-20132659200,[1,12,37,9]%%%}+%%%{-1073741824,[1,
12,36,9]%%%}+%%%{294912,[1,12,36,5]%%%}+%%%{-32768,[1,12,35,5]%%%}+%%%{-88,[1,12,35,1]%%%}+%%%{-10145709240540
2533888,[1,11,39,21]%%%}+%%%{227431781182210048,[1,11,39,17]%%%}+%%%{-4503599627370496,[1,11,38,17]%%%}+%%%{-5
497558138880,[1,11,38,13]%%%}+%%%{549755813888,[1,11,37,13]%%%}+%%%{-3221225472,[1,11,37,9]%%%}+%%%{163840,[1,
11,36,5]%%%}+%%%{88,[1,11,36,1]%%%}+%%%{-138350580552821637120,[1,10,40,21]%%%}+%%%{47287796087390208,[1,10,39
,17]%%%}+%%%{1649267441664,[1,10,38,13]%%%}+%%%{-3489660928,[1,10,38,9]%%%}+%%%{229376,[1,10,37,5]%%%}+%%%{-8,
[1,10,36,1]%%%}+%%%{-9223372036854775808,[1,9,40,21]%%%}+%%%{33776997205278720,[1,9,40,17]%%%}+%%%{-4398046511
104,[1,9,39,13]%%%}+%%%{-402653184,[1,9,38,9]%%%}+%%%{8,[1,9,37,1]%%%}+%%%{-9223372036854775808,[1,8,41,21]%%%
}+%%%{4503599627370496,[1,8,40,17]%%%}+%%%{-268435456,[1,8,39,9]%%%}+%%%{32768,[1,8,38,5]%%%}+%%%{225179981368
5248,[1,7,41,17]%%%}+%%%{-549755813888,[1,7,40,13]%%%} / %%%{134217728,[0,17,10,9]%%%}+%%%{-402653184,[0,16,11
,9]%%%}+%%%{-65536,[0,16,10,5]%%%}+%%%{536870912,[0,15,12,9]%%%}+%%%{402653184,[0,15,11,9]%%%}+%%%{163840,[0,1
5,11,5]%%%}+%%%{8,[0,15,10,1]%%%}+%%%{-536870912,[0,14,13,9]%%%}+%%%{-1207959552,[0,14,12,9]%%%}+%%%{-65536,[0
,14,12,5]%%%}+%%%{-196608,[0,14,11,5]%%%}+%%%{-24,[0,14,11,1]%%%}+%%%{1610612736,[0,13,13,9]%%%}+%%%{402653184
,[0,13,12,9]%%%}+%%%{524288,[0,13,12,5]%%%}+%%%{16,[0,13,12,1]%%%}+%%%{24,[0,13,11,1]%%%}+%%%{-2147483648,[0,1
2,14,9]%%%}+%%%{-1207959552,[0,12,13,9]%%%}+%%%{-163840,[0,12,13,5]%%%}+%%%{-196608,[0,12,12,5]%%%}+%%%{-80,[0
,12,12,1]%%%}+%%%{1476395008,[0,11,14,9]%%%}+%%%{134217728,[0,11,13,9]%%%}+%%%{589824,[0,11,13,5]%%%}+%%%{56,[
0,11,13,1]%%%}+%%%{24,[0,11,12,1]%%%}+%%%{-3355443200,[0,10,15,9]%%%}+%%%{-402653184,[0,10,14,9]%%%}+%%%{-6553
6,[0,10,14,5]%%%}+%%%{-65536,[0,10,13,5]%%%}+%%%{-96,[0,10,13,1]%%%}+%%%{134217728,[0,9,15,9]%%%}+%%%{262144,[
0,9,14,5]%%%}+%%%{72,[0,9,14,1]%%%}+%%%{8,[0,9,13,1]%%%}+%%%{-2550136832,[0,8,16,9]%%%}+%%%{131072,[0,8,15,5]%
%%}+%%%{-48,[0,8,14,1]%%%}+%%%{-402653184,[0,7,16,9]%%%}+%%%{32768,[0,7,15,5]%%%}+%%%{40,[0,7,15,1]%%%}+%%%{-9
39524096,[0,6,17,9]%%%}+%%%{131072,[0,6,16,5]%%%}+%%%{-8,[0,6,15,1]%%%}+%%%{-134217728,[0,5,17,9]%%%}+%%%{8,[0
,5,16,1]%%%}+%%%{-134217728,[0,4,18,9]%%%}+%%%{32768,[0,4,17,5]%%%} Error: Bad Argument Value

________________________________________________________________________________________

maple [F]  time = 0.00, size = 0, normalized size = 0.00 \[\int \frac {x^{8}+a \,x^{4}}{\left (a \,x^{4}-b \,x^{2}\right )^{\frac {1}{4}} \left (x^{8}+2 a \,x^{4}-b \right )}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^8+a*x^4)/(a*x^4-b*x^2)^(1/4)/(x^8+2*a*x^4-b),x)

[Out]

int((x^8+a*x^4)/(a*x^4-b*x^2)^(1/4)/(x^8+2*a*x^4-b),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{8} + a x^{4}}{{\left (x^{8} + 2 \, a x^{4} - b\right )} {\left (a x^{4} - b x^{2}\right )}^{\frac {1}{4}}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^8+a*x^4)/(a*x^4-b*x^2)^(1/4)/(x^8+2*a*x^4-b),x, algorithm="maxima")

[Out]

integrate((x^8 + a*x^4)/((x^8 + 2*a*x^4 - b)*(a*x^4 - b*x^2)^(1/4)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x^8+a\,x^4}{{\left (a\,x^4-b\,x^2\right )}^{1/4}\,\left (x^8+2\,a\,x^4-b\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x^4 + x^8)/((a*x^4 - b*x^2)^(1/4)*(2*a*x^4 - b + x^8)),x)

[Out]

int((a*x^4 + x^8)/((a*x^4 - b*x^2)^(1/4)*(2*a*x^4 - b + x^8)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x**8+a*x**4)/(a*x**4-b*x**2)**(1/4)/(x**8+2*a*x**4-b),x)

[Out]

Timed out

________________________________________________________________________________________