3.21.79 \(\int \frac {b-2 a x^4+2 x^8}{\sqrt [4]{b+a x^4} (-2 b-a x^4+x^8)} \, dx\)

Optimal. Leaf size=150 \[ -\frac {5}{4} \text {RootSum}\left [2 \text {$\#$1}^8-3 \text {$\#$1}^4 a+a^2-b\& ,\frac {\text {$\#$1}^4 \log \left (\sqrt [4]{a x^4+b}-\text {$\#$1} x\right )+\text {$\#$1}^4 (-\log (x))-a \log \left (\sqrt [4]{a x^4+b}-\text {$\#$1} x\right )+a \log (x)}{3 \text {$\#$1} a-4 \text {$\#$1}^5}\& \right ]+\frac {\tan ^{-1}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{a x^4+b}}\right )}{\sqrt [4]{a}}+\frac {\tanh ^{-1}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{a x^4+b}}\right )}{\sqrt [4]{a}} \]

________________________________________________________________________________________

Rubi [B]  time = 1.11, antiderivative size = 503, normalized size of antiderivative = 3.35, number of steps used = 15, number of rules used = 9, integrand size = 40, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.225, Rules used = {6728, 240, 212, 206, 203, 1428, 377, 208, 205} \begin {gather*} \frac {5 b \tan ^{-1}\left (\frac {x \sqrt [4]{-a \sqrt {a^2+8 b}+a^2+2 b}}{\sqrt [4]{a-\sqrt {a^2+8 b}} \sqrt [4]{a x^4+b}}\right )}{\sqrt {a^2+8 b} \left (a-\sqrt {a^2+8 b}\right )^{3/4} \sqrt [4]{-a \sqrt {a^2+8 b}+a^2+2 b}}-\frac {5 b \tan ^{-1}\left (\frac {x \sqrt [4]{a \sqrt {a^2+8 b}+a^2+2 b}}{\sqrt [4]{\sqrt {a^2+8 b}+a} \sqrt [4]{a x^4+b}}\right )}{\sqrt {a^2+8 b} \left (\sqrt {a^2+8 b}+a\right )^{3/4} \sqrt [4]{a \sqrt {a^2+8 b}+a^2+2 b}}+\frac {5 b \tanh ^{-1}\left (\frac {x \sqrt [4]{-a \sqrt {a^2+8 b}+a^2+2 b}}{\sqrt [4]{a-\sqrt {a^2+8 b}} \sqrt [4]{a x^4+b}}\right )}{\sqrt {a^2+8 b} \left (a-\sqrt {a^2+8 b}\right )^{3/4} \sqrt [4]{-a \sqrt {a^2+8 b}+a^2+2 b}}-\frac {5 b \tanh ^{-1}\left (\frac {x \sqrt [4]{a \sqrt {a^2+8 b}+a^2+2 b}}{\sqrt [4]{\sqrt {a^2+8 b}+a} \sqrt [4]{a x^4+b}}\right )}{\sqrt {a^2+8 b} \left (\sqrt {a^2+8 b}+a\right )^{3/4} \sqrt [4]{a \sqrt {a^2+8 b}+a^2+2 b}}+\frac {\tan ^{-1}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{a x^4+b}}\right )}{\sqrt [4]{a}}+\frac {\tanh ^{-1}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{a x^4+b}}\right )}{\sqrt [4]{a}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(b - 2*a*x^4 + 2*x^8)/((b + a*x^4)^(1/4)*(-2*b - a*x^4 + x^8)),x]

[Out]

ArcTan[(a^(1/4)*x)/(b + a*x^4)^(1/4)]/a^(1/4) + (5*b*ArcTan[((a^2 + 2*b - a*Sqrt[a^2 + 8*b])^(1/4)*x)/((a - Sq
rt[a^2 + 8*b])^(1/4)*(b + a*x^4)^(1/4))])/(Sqrt[a^2 + 8*b]*(a - Sqrt[a^2 + 8*b])^(3/4)*(a^2 + 2*b - a*Sqrt[a^2
 + 8*b])^(1/4)) - (5*b*ArcTan[((a^2 + 2*b + a*Sqrt[a^2 + 8*b])^(1/4)*x)/((a + Sqrt[a^2 + 8*b])^(1/4)*(b + a*x^
4)^(1/4))])/(Sqrt[a^2 + 8*b]*(a + Sqrt[a^2 + 8*b])^(3/4)*(a^2 + 2*b + a*Sqrt[a^2 + 8*b])^(1/4)) + ArcTanh[(a^(
1/4)*x)/(b + a*x^4)^(1/4)]/a^(1/4) + (5*b*ArcTanh[((a^2 + 2*b - a*Sqrt[a^2 + 8*b])^(1/4)*x)/((a - Sqrt[a^2 + 8
*b])^(1/4)*(b + a*x^4)^(1/4))])/(Sqrt[a^2 + 8*b]*(a - Sqrt[a^2 + 8*b])^(3/4)*(a^2 + 2*b - a*Sqrt[a^2 + 8*b])^(
1/4)) - (5*b*ArcTanh[((a^2 + 2*b + a*Sqrt[a^2 + 8*b])^(1/4)*x)/((a + Sqrt[a^2 + 8*b])^(1/4)*(b + a*x^4)^(1/4))
])/(Sqrt[a^2 + 8*b]*(a + Sqrt[a^2 + 8*b])^(3/4)*(a^2 + 2*b + a*Sqrt[a^2 + 8*b])^(1/4))

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 212

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b), 2]
]}, Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
 !GtQ[a/b, 0]

Rule 240

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^(p + 1/n), Subst[Int[1/(1 - b*x^n)^(p + 1/n + 1), x], x
, x/(a + b*x^n)^(1/n)], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[p, -2^(-1)] && IntegerQ[p
 + 1/n]

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 1428

Int[((d_) + (e_.)*(x_)^(n_))^(q_)/((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x_Symbol] :> With[{r = Rt[b^2 -
 4*a*c, 2]}, Dist[(2*c)/r, Int[(d + e*x^n)^q/(b - r + 2*c*x^n), x], x] - Dist[(2*c)/r, Int[(d + e*x^n)^q/(b +
r + 2*c*x^n), x], x]] /; FreeQ[{a, b, c, d, e, n, q}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 -
 b*d*e + a*e^2, 0] &&  !IntegerQ[q]

Rule 6728

Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a +
b*x^n + c*x^(2*n)), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {b-2 a x^4+2 x^8}{\sqrt [4]{b+a x^4} \left (-2 b-a x^4+x^8\right )} \, dx &=\int \left (\frac {2}{\sqrt [4]{b+a x^4}}+\frac {5 b}{\sqrt [4]{b+a x^4} \left (-2 b-a x^4+x^8\right )}\right ) \, dx\\ &=2 \int \frac {1}{\sqrt [4]{b+a x^4}} \, dx+(5 b) \int \frac {1}{\sqrt [4]{b+a x^4} \left (-2 b-a x^4+x^8\right )} \, dx\\ &=2 \operatorname {Subst}\left (\int \frac {1}{1-a x^4} \, dx,x,\frac {x}{\sqrt [4]{b+a x^4}}\right )+\frac {(10 b) \int \frac {1}{\left (-a-\sqrt {a^2+8 b}+2 x^4\right ) \sqrt [4]{b+a x^4}} \, dx}{\sqrt {a^2+8 b}}-\frac {(10 b) \int \frac {1}{\left (-a+\sqrt {a^2+8 b}+2 x^4\right ) \sqrt [4]{b+a x^4}} \, dx}{\sqrt {a^2+8 b}}\\ &=\frac {(10 b) \operatorname {Subst}\left (\int \frac {1}{-a-\sqrt {a^2+8 b}-\left (-2 b+a \left (-a-\sqrt {a^2+8 b}\right )\right ) x^4} \, dx,x,\frac {x}{\sqrt [4]{b+a x^4}}\right )}{\sqrt {a^2+8 b}}-\frac {(10 b) \operatorname {Subst}\left (\int \frac {1}{-a+\sqrt {a^2+8 b}-\left (-2 b+a \left (-a+\sqrt {a^2+8 b}\right )\right ) x^4} \, dx,x,\frac {x}{\sqrt [4]{b+a x^4}}\right )}{\sqrt {a^2+8 b}}+\operatorname {Subst}\left (\int \frac {1}{1-\sqrt {a} x^2} \, dx,x,\frac {x}{\sqrt [4]{b+a x^4}}\right )+\operatorname {Subst}\left (\int \frac {1}{1+\sqrt {a} x^2} \, dx,x,\frac {x}{\sqrt [4]{b+a x^4}}\right )\\ &=\frac {\tan ^{-1}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{b+a x^4}}\right )}{\sqrt [4]{a}}+\frac {\tanh ^{-1}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{b+a x^4}}\right )}{\sqrt [4]{a}}+\frac {(5 b) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a-\sqrt {a^2+8 b}}-\sqrt {a^2+2 b-a \sqrt {a^2+8 b}} x^2} \, dx,x,\frac {x}{\sqrt [4]{b+a x^4}}\right )}{\sqrt {a^2+8 b} \sqrt {a-\sqrt {a^2+8 b}}}+\frac {(5 b) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a-\sqrt {a^2+8 b}}+\sqrt {a^2+2 b-a \sqrt {a^2+8 b}} x^2} \, dx,x,\frac {x}{\sqrt [4]{b+a x^4}}\right )}{\sqrt {a^2+8 b} \sqrt {a-\sqrt {a^2+8 b}}}-\frac {(5 b) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+\sqrt {a^2+8 b}}-\sqrt {a^2+2 b+a \sqrt {a^2+8 b}} x^2} \, dx,x,\frac {x}{\sqrt [4]{b+a x^4}}\right )}{\sqrt {a^2+8 b} \sqrt {a+\sqrt {a^2+8 b}}}-\frac {(5 b) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+\sqrt {a^2+8 b}}+\sqrt {a^2+2 b+a \sqrt {a^2+8 b}} x^2} \, dx,x,\frac {x}{\sqrt [4]{b+a x^4}}\right )}{\sqrt {a^2+8 b} \sqrt {a+\sqrt {a^2+8 b}}}\\ &=\frac {\tan ^{-1}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{b+a x^4}}\right )}{\sqrt [4]{a}}+\frac {5 b \tan ^{-1}\left (\frac {\sqrt [4]{a^2+2 b-a \sqrt {a^2+8 b}} x}{\sqrt [4]{a-\sqrt {a^2+8 b}} \sqrt [4]{b+a x^4}}\right )}{\sqrt {a^2+8 b} \left (a-\sqrt {a^2+8 b}\right )^{3/4} \sqrt [4]{a^2+2 b-a \sqrt {a^2+8 b}}}-\frac {5 b \tan ^{-1}\left (\frac {\sqrt [4]{a^2+2 b+a \sqrt {a^2+8 b}} x}{\sqrt [4]{a+\sqrt {a^2+8 b}} \sqrt [4]{b+a x^4}}\right )}{\sqrt {a^2+8 b} \left (a+\sqrt {a^2+8 b}\right )^{3/4} \sqrt [4]{a^2+2 b+a \sqrt {a^2+8 b}}}+\frac {\tanh ^{-1}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{b+a x^4}}\right )}{\sqrt [4]{a}}+\frac {5 b \tanh ^{-1}\left (\frac {\sqrt [4]{a^2+2 b-a \sqrt {a^2+8 b}} x}{\sqrt [4]{a-\sqrt {a^2+8 b}} \sqrt [4]{b+a x^4}}\right )}{\sqrt {a^2+8 b} \left (a-\sqrt {a^2+8 b}\right )^{3/4} \sqrt [4]{a^2+2 b-a \sqrt {a^2+8 b}}}-\frac {5 b \tanh ^{-1}\left (\frac {\sqrt [4]{a^2+2 b+a \sqrt {a^2+8 b}} x}{\sqrt [4]{a+\sqrt {a^2+8 b}} \sqrt [4]{b+a x^4}}\right )}{\sqrt {a^2+8 b} \left (a+\sqrt {a^2+8 b}\right )^{3/4} \sqrt [4]{a^2+2 b+a \sqrt {a^2+8 b}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 0.92, size = 392, normalized size = 2.61 \begin {gather*} \frac {5 b \left (\tan ^{-1}\left (\frac {x \sqrt [4]{-a \sqrt {a^2+8 b}+a^2+2 b}}{\sqrt [4]{a-\sqrt {a^2+8 b}} \sqrt [4]{a x^4+b}}\right )+\tanh ^{-1}\left (\frac {x \sqrt [4]{-a \sqrt {a^2+8 b}+a^2+2 b}}{\sqrt [4]{a-\sqrt {a^2+8 b}} \sqrt [4]{a x^4+b}}\right )\right )}{\sqrt {a^2+8 b} \left (a-\sqrt {a^2+8 b}\right )^{3/4} \sqrt [4]{-a \sqrt {a^2+8 b}+a^2+2 b}}-\frac {5 b \left (\tan ^{-1}\left (\frac {x \sqrt [4]{a \sqrt {a^2+8 b}+a^2+2 b}}{\sqrt [4]{\sqrt {a^2+8 b}+a} \sqrt [4]{a x^4+b}}\right )+\tanh ^{-1}\left (\frac {x \sqrt [4]{a \sqrt {a^2+8 b}+a^2+2 b}}{\sqrt [4]{\sqrt {a^2+8 b}+a} \sqrt [4]{a x^4+b}}\right )\right )}{\sqrt {a^2+8 b} \left (\sqrt {a^2+8 b}+a\right )^{3/4} \sqrt [4]{a \sqrt {a^2+8 b}+a^2+2 b}}+\frac {\tan ^{-1}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{a x^4+b}}\right )}{\sqrt [4]{a}}+\frac {\tanh ^{-1}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{a x^4+b}}\right )}{\sqrt [4]{a}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(b - 2*a*x^4 + 2*x^8)/((b + a*x^4)^(1/4)*(-2*b - a*x^4 + x^8)),x]

[Out]

ArcTan[(a^(1/4)*x)/(b + a*x^4)^(1/4)]/a^(1/4) + ArcTanh[(a^(1/4)*x)/(b + a*x^4)^(1/4)]/a^(1/4) + (5*b*(ArcTan[
((a^2 + 2*b - a*Sqrt[a^2 + 8*b])^(1/4)*x)/((a - Sqrt[a^2 + 8*b])^(1/4)*(b + a*x^4)^(1/4))] + ArcTanh[((a^2 + 2
*b - a*Sqrt[a^2 + 8*b])^(1/4)*x)/((a - Sqrt[a^2 + 8*b])^(1/4)*(b + a*x^4)^(1/4))]))/(Sqrt[a^2 + 8*b]*(a - Sqrt
[a^2 + 8*b])^(3/4)*(a^2 + 2*b - a*Sqrt[a^2 + 8*b])^(1/4)) - (5*b*(ArcTan[((a^2 + 2*b + a*Sqrt[a^2 + 8*b])^(1/4
)*x)/((a + Sqrt[a^2 + 8*b])^(1/4)*(b + a*x^4)^(1/4))] + ArcTanh[((a^2 + 2*b + a*Sqrt[a^2 + 8*b])^(1/4)*x)/((a
+ Sqrt[a^2 + 8*b])^(1/4)*(b + a*x^4)^(1/4))]))/(Sqrt[a^2 + 8*b]*(a + Sqrt[a^2 + 8*b])^(3/4)*(a^2 + 2*b + a*Sqr
t[a^2 + 8*b])^(1/4))

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 1.26, size = 150, normalized size = 1.00 \begin {gather*} \frac {\tan ^{-1}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{b+a x^4}}\right )}{\sqrt [4]{a}}+\frac {\tanh ^{-1}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{b+a x^4}}\right )}{\sqrt [4]{a}}-\frac {5}{4} \text {RootSum}\left [a^2-b-3 a \text {$\#$1}^4+2 \text {$\#$1}^8\&,\frac {-a \log (x)+a \log \left (\sqrt [4]{b+a x^4}-x \text {$\#$1}\right )+\log (x) \text {$\#$1}^4-\log \left (\sqrt [4]{b+a x^4}-x \text {$\#$1}\right ) \text {$\#$1}^4}{-3 a \text {$\#$1}+4 \text {$\#$1}^5}\&\right ] \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(b - 2*a*x^4 + 2*x^8)/((b + a*x^4)^(1/4)*(-2*b - a*x^4 + x^8)),x]

[Out]

ArcTan[(a^(1/4)*x)/(b + a*x^4)^(1/4)]/a^(1/4) + ArcTanh[(a^(1/4)*x)/(b + a*x^4)^(1/4)]/a^(1/4) - (5*RootSum[a^
2 - b - 3*a*#1^4 + 2*#1^8 & , (-(a*Log[x]) + a*Log[(b + a*x^4)^(1/4) - x*#1] + Log[x]*#1^4 - Log[(b + a*x^4)^(
1/4) - x*#1]*#1^4)/(-3*a*#1 + 4*#1^5) & ])/4

________________________________________________________________________________________

fricas [B]  time = 1.41, size = 4325, normalized size = 28.83

result too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x^8-2*a*x^4+b)/(a*x^4+b)^(1/4)/(x^8-a*x^4-2*b),x, algorithm="fricas")

[Out]

5/2*((a^5 + 9*a^3*b + 14*a*b^2 - (a^6 + 15*a^4*b + 48*a^2*b^2 - 64*b^3)*sqrt((a^8 + 10*a^6*b + 29*a^4*b^2 + 20
*a^2*b^3 + 4*b^4)/(a^10 + 22*a^8*b + 145*a^6*b^2 + 152*a^4*b^3 - 832*a^2*b^4 + 512*b^5)))/(a^6 + 15*a^4*b + 48
*a^2*b^2 - 64*b^3))^(1/4)*arctan(-1/8*(sqrt(1/2)*((a^7 + 15*a^5*b + 48*a^3*b^2 - 64*a*b^3)*x*sqrt((a^8 + 10*a^
6*b + 29*a^4*b^2 + 20*a^2*b^3 + 4*b^4)/(a^10 + 22*a^8*b + 145*a^6*b^2 + 152*a^4*b^3 - 832*a^2*b^4 + 512*b^5))
+ (a^6 + 13*a^4*b + 42*a^2*b^2 + 16*b^3)*x)*sqrt((8*(a^8*b^6 + 10*a^6*b^7 + 29*a^4*b^8 + 20*a^2*b^9 + 4*b^10)*
sqrt(a*x^4 + b) + ((a^14*b^4 + 29*a^12*b^5 + 313*a^10*b^6 + 1491*a^8*b^7 + 2630*a^6*b^8 - 496*a^4*b^9 - 2944*a
^2*b^10 - 1024*b^11)*x^2*sqrt((a^8 + 10*a^6*b + 29*a^4*b^2 + 20*a^2*b^3 + 4*b^4)/(a^10 + 22*a^8*b + 145*a^6*b^
2 + 152*a^4*b^3 - 832*a^2*b^4 + 512*b^5)) + (a^13*b^4 + 23*a^11*b^5 + 199*a^9*b^6 + 797*a^7*b^7 + 1424*a^5*b^8
 + 852*a^3*b^9 + 160*a*b^10)*x^2)*sqrt((a^5 + 9*a^3*b + 14*a*b^2 - (a^6 + 15*a^4*b + 48*a^2*b^2 - 64*b^3)*sqrt
((a^8 + 10*a^6*b + 29*a^4*b^2 + 20*a^2*b^3 + 4*b^4)/(a^10 + 22*a^8*b + 145*a^6*b^2 + 152*a^4*b^3 - 832*a^2*b^4
 + 512*b^5)))/(a^6 + 15*a^4*b + 48*a^2*b^2 - 64*b^3)))/x^2) - 2*(a^10*b^3 + 18*a^8*b^4 + 109*a^6*b^5 + 252*a^4
*b^6 + 164*a^2*b^7 + 32*b^8 + (a^11*b^3 + 20*a^9*b^4 + 125*a^7*b^5 + 206*a^5*b^6 - 224*a^3*b^7 - 128*a*b^8)*sq
rt((a^8 + 10*a^6*b + 29*a^4*b^2 + 20*a^2*b^3 + 4*b^4)/(a^10 + 22*a^8*b + 145*a^6*b^2 + 152*a^4*b^3 - 832*a^2*b
^4 + 512*b^5)))*(a*x^4 + b)^(1/4))*((a^5 + 9*a^3*b + 14*a*b^2 - (a^6 + 15*a^4*b + 48*a^2*b^2 - 64*b^3)*sqrt((a
^8 + 10*a^6*b + 29*a^4*b^2 + 20*a^2*b^3 + 4*b^4)/(a^10 + 22*a^8*b + 145*a^6*b^2 + 152*a^4*b^3 - 832*a^2*b^4 +
512*b^5)))/(a^6 + 15*a^4*b + 48*a^2*b^2 - 64*b^3))^(1/4)/((a^8*b^4 + 10*a^6*b^5 + 29*a^4*b^6 + 20*a^2*b^7 + 4*
b^8)*x)) - 5/2*((a^5 + 9*a^3*b + 14*a*b^2 + (a^6 + 15*a^4*b + 48*a^2*b^2 - 64*b^3)*sqrt((a^8 + 10*a^6*b + 29*a
^4*b^2 + 20*a^2*b^3 + 4*b^4)/(a^10 + 22*a^8*b + 145*a^6*b^2 + 152*a^4*b^3 - 832*a^2*b^4 + 512*b^5)))/(a^6 + 15
*a^4*b + 48*a^2*b^2 - 64*b^3))^(1/4)*arctan(-1/8*(sqrt(1/2)*((a^7 + 15*a^5*b + 48*a^3*b^2 - 64*a*b^3)*x*sqrt((
a^8 + 10*a^6*b + 29*a^4*b^2 + 20*a^2*b^3 + 4*b^4)/(a^10 + 22*a^8*b + 145*a^6*b^2 + 152*a^4*b^3 - 832*a^2*b^4 +
 512*b^5)) - (a^6 + 13*a^4*b + 42*a^2*b^2 + 16*b^3)*x)*((a^5 + 9*a^3*b + 14*a*b^2 + (a^6 + 15*a^4*b + 48*a^2*b
^2 - 64*b^3)*sqrt((a^8 + 10*a^6*b + 29*a^4*b^2 + 20*a^2*b^3 + 4*b^4)/(a^10 + 22*a^8*b + 145*a^6*b^2 + 152*a^4*
b^3 - 832*a^2*b^4 + 512*b^5)))/(a^6 + 15*a^4*b + 48*a^2*b^2 - 64*b^3))^(1/4)*sqrt((8*(a^8*b^6 + 10*a^6*b^7 + 2
9*a^4*b^8 + 20*a^2*b^9 + 4*b^10)*sqrt(a*x^4 + b) - ((a^14*b^4 + 29*a^12*b^5 + 313*a^10*b^6 + 1491*a^8*b^7 + 26
30*a^6*b^8 - 496*a^4*b^9 - 2944*a^2*b^10 - 1024*b^11)*x^2*sqrt((a^8 + 10*a^6*b + 29*a^4*b^2 + 20*a^2*b^3 + 4*b
^4)/(a^10 + 22*a^8*b + 145*a^6*b^2 + 152*a^4*b^3 - 832*a^2*b^4 + 512*b^5)) - (a^13*b^4 + 23*a^11*b^5 + 199*a^9
*b^6 + 797*a^7*b^7 + 1424*a^5*b^8 + 852*a^3*b^9 + 160*a*b^10)*x^2)*sqrt((a^5 + 9*a^3*b + 14*a*b^2 + (a^6 + 15*
a^4*b + 48*a^2*b^2 - 64*b^3)*sqrt((a^8 + 10*a^6*b + 29*a^4*b^2 + 20*a^2*b^3 + 4*b^4)/(a^10 + 22*a^8*b + 145*a^
6*b^2 + 152*a^4*b^3 - 832*a^2*b^4 + 512*b^5)))/(a^6 + 15*a^4*b + 48*a^2*b^2 - 64*b^3)))/x^2) + 2*(a^10*b^3 + 1
8*a^8*b^4 + 109*a^6*b^5 + 252*a^4*b^6 + 164*a^2*b^7 + 32*b^8 - (a^11*b^3 + 20*a^9*b^4 + 125*a^7*b^5 + 206*a^5*
b^6 - 224*a^3*b^7 - 128*a*b^8)*sqrt((a^8 + 10*a^6*b + 29*a^4*b^2 + 20*a^2*b^3 + 4*b^4)/(a^10 + 22*a^8*b + 145*
a^6*b^2 + 152*a^4*b^3 - 832*a^2*b^4 + 512*b^5)))*(a*x^4 + b)^(1/4)*((a^5 + 9*a^3*b + 14*a*b^2 + (a^6 + 15*a^4*
b + 48*a^2*b^2 - 64*b^3)*sqrt((a^8 + 10*a^6*b + 29*a^4*b^2 + 20*a^2*b^3 + 4*b^4)/(a^10 + 22*a^8*b + 145*a^6*b^
2 + 152*a^4*b^3 - 832*a^2*b^4 + 512*b^5)))/(a^6 + 15*a^4*b + 48*a^2*b^2 - 64*b^3))^(1/4))/((a^8*b^4 + 10*a^6*b
^5 + 29*a^4*b^6 + 20*a^2*b^7 + 4*b^8)*x)) + 5/8*((a^5 + 9*a^3*b + 14*a*b^2 + (a^6 + 15*a^4*b + 48*a^2*b^2 - 64
*b^3)*sqrt((a^8 + 10*a^6*b + 29*a^4*b^2 + 20*a^2*b^3 + 4*b^4)/(a^10 + 22*a^8*b + 145*a^6*b^2 + 152*a^4*b^3 - 8
32*a^2*b^4 + 512*b^5)))/(a^6 + 15*a^4*b + 48*a^2*b^2 - 64*b^3))^(1/4)*log(78125/16*(((a^12 + 30*a^10*b + 333*a
^8*b^2 + 1588*a^6*b^3 + 2400*a^4*b^4 - 2304*a^2*b^5 - 2048*b^6)*x*sqrt((a^8 + 10*a^6*b + 29*a^4*b^2 + 20*a^2*b
^3 + 4*b^4)/(a^10 + 22*a^8*b + 145*a^6*b^2 + 152*a^4*b^3 - 832*a^2*b^4 + 512*b^5)) - (a^11 + 24*a^9*b + 209*a^
7*b^2 + 790*a^5*b^3 + 1184*a^3*b^4 + 384*a*b^5)*x)*((a^5 + 9*a^3*b + 14*a*b^2 + (a^6 + 15*a^4*b + 48*a^2*b^2 -
 64*b^3)*sqrt((a^8 + 10*a^6*b + 29*a^4*b^2 + 20*a^2*b^3 + 4*b^4)/(a^10 + 22*a^8*b + 145*a^6*b^2 + 152*a^4*b^3
- 832*a^2*b^4 + 512*b^5)))/(a^6 + 15*a^4*b + 48*a^2*b^2 - 64*b^3))^(3/4) + 16*(a^4*b^3 + 5*a^2*b^4 + 2*b^5)*(a
*x^4 + b)^(1/4))/x) - 5/8*((a^5 + 9*a^3*b + 14*a*b^2 + (a^6 + 15*a^4*b + 48*a^2*b^2 - 64*b^3)*sqrt((a^8 + 10*a
^6*b + 29*a^4*b^2 + 20*a^2*b^3 + 4*b^4)/(a^10 + 22*a^8*b + 145*a^6*b^2 + 152*a^4*b^3 - 832*a^2*b^4 + 512*b^5))
)/(a^6 + 15*a^4*b + 48*a^2*b^2 - 64*b^3))^(1/4)*log(-78125/16*(((a^12 + 30*a^10*b + 333*a^8*b^2 + 1588*a^6*b^3
 + 2400*a^4*b^4 - 2304*a^2*b^5 - 2048*b^6)*x*sqrt((a^8 + 10*a^6*b + 29*a^4*b^2 + 20*a^2*b^3 + 4*b^4)/(a^10 + 2
2*a^8*b + 145*a^6*b^2 + 152*a^4*b^3 - 832*a^2*b^4 + 512*b^5)) - (a^11 + 24*a^9*b + 209*a^7*b^2 + 790*a^5*b^3 +
 1184*a^3*b^4 + 384*a*b^5)*x)*((a^5 + 9*a^3*b + 14*a*b^2 + (a^6 + 15*a^4*b + 48*a^2*b^2 - 64*b^3)*sqrt((a^8 +
10*a^6*b + 29*a^4*b^2 + 20*a^2*b^3 + 4*b^4)/(a^10 + 22*a^8*b + 145*a^6*b^2 + 152*a^4*b^3 - 832*a^2*b^4 + 512*b
^5)))/(a^6 + 15*a^4*b + 48*a^2*b^2 - 64*b^3))^(3/4) - 16*(a^4*b^3 + 5*a^2*b^4 + 2*b^5)*(a*x^4 + b)^(1/4))/x) -
 5/8*((a^5 + 9*a^3*b + 14*a*b^2 - (a^6 + 15*a^4*b + 48*a^2*b^2 - 64*b^3)*sqrt((a^8 + 10*a^6*b + 29*a^4*b^2 + 2
0*a^2*b^3 + 4*b^4)/(a^10 + 22*a^8*b + 145*a^6*b^2 + 152*a^4*b^3 - 832*a^2*b^4 + 512*b^5)))/(a^6 + 15*a^4*b + 4
8*a^2*b^2 - 64*b^3))^(1/4)*log(78125/16*(((a^12 + 30*a^10*b + 333*a^8*b^2 + 1588*a^6*b^3 + 2400*a^4*b^4 - 2304
*a^2*b^5 - 2048*b^6)*x*sqrt((a^8 + 10*a^6*b + 29*a^4*b^2 + 20*a^2*b^3 + 4*b^4)/(a^10 + 22*a^8*b + 145*a^6*b^2
+ 152*a^4*b^3 - 832*a^2*b^4 + 512*b^5)) + (a^11 + 24*a^9*b + 209*a^7*b^2 + 790*a^5*b^3 + 1184*a^3*b^4 + 384*a*
b^5)*x)*((a^5 + 9*a^3*b + 14*a*b^2 - (a^6 + 15*a^4*b + 48*a^2*b^2 - 64*b^3)*sqrt((a^8 + 10*a^6*b + 29*a^4*b^2
+ 20*a^2*b^3 + 4*b^4)/(a^10 + 22*a^8*b + 145*a^6*b^2 + 152*a^4*b^3 - 832*a^2*b^4 + 512*b^5)))/(a^6 + 15*a^4*b
+ 48*a^2*b^2 - 64*b^3))^(3/4) + 16*(a^4*b^3 + 5*a^2*b^4 + 2*b^5)*(a*x^4 + b)^(1/4))/x) + 5/8*((a^5 + 9*a^3*b +
 14*a*b^2 - (a^6 + 15*a^4*b + 48*a^2*b^2 - 64*b^3)*sqrt((a^8 + 10*a^6*b + 29*a^4*b^2 + 20*a^2*b^3 + 4*b^4)/(a^
10 + 22*a^8*b + 145*a^6*b^2 + 152*a^4*b^3 - 832*a^2*b^4 + 512*b^5)))/(a^6 + 15*a^4*b + 48*a^2*b^2 - 64*b^3))^(
1/4)*log(-78125/16*(((a^12 + 30*a^10*b + 333*a^8*b^2 + 1588*a^6*b^3 + 2400*a^4*b^4 - 2304*a^2*b^5 - 2048*b^6)*
x*sqrt((a^8 + 10*a^6*b + 29*a^4*b^2 + 20*a^2*b^3 + 4*b^4)/(a^10 + 22*a^8*b + 145*a^6*b^2 + 152*a^4*b^3 - 832*a
^2*b^4 + 512*b^5)) + (a^11 + 24*a^9*b + 209*a^7*b^2 + 790*a^5*b^3 + 1184*a^3*b^4 + 384*a*b^5)*x)*((a^5 + 9*a^3
*b + 14*a*b^2 - (a^6 + 15*a^4*b + 48*a^2*b^2 - 64*b^3)*sqrt((a^8 + 10*a^6*b + 29*a^4*b^2 + 20*a^2*b^3 + 4*b^4)
/(a^10 + 22*a^8*b + 145*a^6*b^2 + 152*a^4*b^3 - 832*a^2*b^4 + 512*b^5)))/(a^6 + 15*a^4*b + 48*a^2*b^2 - 64*b^3
))^(3/4) - 16*(a^4*b^3 + 5*a^2*b^4 + 2*b^5)*(a*x^4 + b)^(1/4))/x) + 2*arctan((x*sqrt((sqrt(a)*x^2 + sqrt(a*x^4
 + b))/x^2)/a^(1/4) - (a*x^4 + b)^(1/4)/a^(1/4))/x)/a^(1/4) + 1/2*log((a^(1/4)*x + (a*x^4 + b)^(1/4))/x)/a^(1/
4) - 1/2*log(-(a^(1/4)*x - (a*x^4 + b)^(1/4))/x)/a^(1/4)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, x^{8} - 2 \, a x^{4} + b}{{\left (x^{8} - a x^{4} - 2 \, b\right )} {\left (a x^{4} + b\right )}^{\frac {1}{4}}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x^8-2*a*x^4+b)/(a*x^4+b)^(1/4)/(x^8-a*x^4-2*b),x, algorithm="giac")

[Out]

integrate((2*x^8 - 2*a*x^4 + b)/((x^8 - a*x^4 - 2*b)*(a*x^4 + b)^(1/4)), x)

________________________________________________________________________________________

maple [F]  time = 0.03, size = 0, normalized size = 0.00 \[\int \frac {2 x^{8}-2 a \,x^{4}+b}{\left (a \,x^{4}+b \right )^{\frac {1}{4}} \left (x^{8}-a \,x^{4}-2 b \right )}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*x^8-2*a*x^4+b)/(a*x^4+b)^(1/4)/(x^8-a*x^4-2*b),x)

[Out]

int((2*x^8-2*a*x^4+b)/(a*x^4+b)^(1/4)/(x^8-a*x^4-2*b),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, x^{8} - 2 \, a x^{4} + b}{{\left (x^{8} - a x^{4} - 2 \, b\right )} {\left (a x^{4} + b\right )}^{\frac {1}{4}}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x^8-2*a*x^4+b)/(a*x^4+b)^(1/4)/(x^8-a*x^4-2*b),x, algorithm="maxima")

[Out]

integrate((2*x^8 - 2*a*x^4 + b)/((x^8 - a*x^4 - 2*b)*(a*x^4 + b)^(1/4)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int -\frac {2\,x^8-2\,a\,x^4+b}{{\left (a\,x^4+b\right )}^{1/4}\,\left (-x^8+a\,x^4+2\,b\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(b - 2*a*x^4 + 2*x^8)/((b + a*x^4)^(1/4)*(2*b + a*x^4 - x^8)),x)

[Out]

int(-(b - 2*a*x^4 + 2*x^8)/((b + a*x^4)^(1/4)*(2*b + a*x^4 - x^8)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x**8-2*a*x**4+b)/(a*x**4+b)**(1/4)/(x**8-a*x**4-2*b),x)

[Out]

Timed out

________________________________________________________________________________________