3.2.49 \(\int \frac {(-1+2 x^3) \sqrt [3]{x^2+x^5}}{x^3} \, dx\)

Optimal. Leaf size=18 \[ \frac {3 \left (x^5+x^2\right )^{4/3}}{4 x^4} \]

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 18, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.045, Rules used = {1590} \begin {gather*} \frac {3 \left (x^5+x^2\right )^{4/3}}{4 x^4} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((-1 + 2*x^3)*(x^2 + x^5)^(1/3))/x^3,x]

[Out]

(3*(x^2 + x^5)^(4/3))/(4*x^4)

Rule 1590

Int[(Pp_)*(Qq_)^(m_.)*(Rr_)^(n_.), x_Symbol] :> With[{p = Expon[Pp, x], q = Expon[Qq, x], r = Expon[Rr, x]}, S
imp[(Coeff[Pp, x, p]*x^(p - q - r + 1)*Qq^(m + 1)*Rr^(n + 1))/((p + m*q + n*r + 1)*Coeff[Qq, x, q]*Coeff[Rr, x
, r]), x] /; NeQ[p + m*q + n*r + 1, 0] && EqQ[(p + m*q + n*r + 1)*Coeff[Qq, x, q]*Coeff[Rr, x, r]*Pp, Coeff[Pp
, x, p]*x^(p - q - r)*((p - q - r + 1)*Qq*Rr + (m + 1)*x*Rr*D[Qq, x] + (n + 1)*x*Qq*D[Rr, x])]] /; FreeQ[{m, n
}, x] && PolyQ[Pp, x] && PolyQ[Qq, x] && PolyQ[Rr, x] && NeQ[m, -1] && NeQ[n, -1]

Rubi steps

\begin {align*} \int \frac {\left (-1+2 x^3\right ) \sqrt [3]{x^2+x^5}}{x^3} \, dx &=\frac {3 \left (x^2+x^5\right )^{4/3}}{4 x^4}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 23, normalized size = 1.28 \begin {gather*} \frac {3 \left (x^3+1\right ) \sqrt [3]{x^5+x^2}}{4 x^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((-1 + 2*x^3)*(x^2 + x^5)^(1/3))/x^3,x]

[Out]

(3*(1 + x^3)*(x^2 + x^5)^(1/3))/(4*x^2)

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.10, size = 18, normalized size = 1.00 \begin {gather*} \frac {3 \left (x^2+x^5\right )^{4/3}}{4 x^4} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[((-1 + 2*x^3)*(x^2 + x^5)^(1/3))/x^3,x]

[Out]

(3*(x^2 + x^5)^(4/3))/(4*x^4)

________________________________________________________________________________________

fricas [A]  time = 0.45, size = 19, normalized size = 1.06 \begin {gather*} \frac {3 \, {\left (x^{5} + x^{2}\right )}^{\frac {1}{3}} {\left (x^{3} + 1\right )}}{4 \, x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x^3-1)*(x^5+x^2)^(1/3)/x^3,x, algorithm="fricas")

[Out]

3/4*(x^5 + x^2)^(1/3)*(x^3 + 1)/x^2

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (x^{5} + x^{2}\right )}^{\frac {1}{3}} {\left (2 \, x^{3} - 1\right )}}{x^{3}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x^3-1)*(x^5+x^2)^(1/3)/x^3,x, algorithm="giac")

[Out]

integrate((x^5 + x^2)^(1/3)*(2*x^3 - 1)/x^3, x)

________________________________________________________________________________________

maple [A]  time = 0.10, size = 20, normalized size = 1.11

method result size
trager \(\frac {3 \left (x^{3}+1\right ) \left (x^{5}+x^{2}\right )^{\frac {1}{3}}}{4 x^{2}}\) \(20\)
gosper \(\frac {3 \left (x^{2}-x +1\right ) \left (1+x \right ) \left (x^{5}+x^{2}\right )^{\frac {1}{3}}}{4 x^{2}}\) \(26\)
meijerg \(\frac {3 \hypergeom \left (\left [-\frac {4}{9}, -\frac {1}{3}\right ], \left [\frac {5}{9}\right ], -x^{3}\right )}{4 x^{\frac {4}{3}}}+\frac {6 \hypergeom \left (\left [-\frac {1}{3}, \frac {5}{9}\right ], \left [\frac {14}{9}\right ], -x^{3}\right ) x^{\frac {5}{3}}}{5}\) \(34\)
risch \(\frac {3 \left (x^{2} \left (x^{3}+1\right )\right )^{\frac {1}{3}} \left (x^{6}+2 x^{3}+1\right )}{4 x^{2} \left (x^{3}+1\right )}\) \(34\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*x^3-1)*(x^5+x^2)^(1/3)/x^3,x,method=_RETURNVERBOSE)

[Out]

3/4*(x^3+1)/x^2*(x^5+x^2)^(1/3)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (x^{5} + x^{2}\right )}^{\frac {1}{3}} {\left (2 \, x^{3} - 1\right )}}{x^{3}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x^3-1)*(x^5+x^2)^(1/3)/x^3,x, algorithm="maxima")

[Out]

integrate((x^5 + x^2)^(1/3)*(2*x^3 - 1)/x^3, x)

________________________________________________________________________________________

mupad [B]  time = 0.21, size = 19, normalized size = 1.06 \begin {gather*} \frac {3\,{\left (x^5+x^2\right )}^{1/3}\,\left (x^3+1\right )}{4\,x^2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((x^2 + x^5)^(1/3)*(2*x^3 - 1))/x^3,x)

[Out]

(3*(x^2 + x^5)^(1/3)*(x^3 + 1))/(4*x^2)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt [3]{x^{2} \left (x + 1\right ) \left (x^{2} - x + 1\right )} \left (2 x^{3} - 1\right )}{x^{3}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x**3-1)*(x**5+x**2)**(1/3)/x**3,x)

[Out]

Integral((x**2*(x + 1)*(x**2 - x + 1))**(1/3)*(2*x**3 - 1)/x**3, x)

________________________________________________________________________________________