3.16.61 \(\int \frac {-b-a x^3+x^6}{x^6 \sqrt [4]{b x+a x^4}} \, dx\)

Optimal. Leaf size=107 \[ \frac {2 \tan ^{-1}\left (\frac {\sqrt [4]{a} \left (a x^4+b x\right )^{3/4}}{a x^3+b}\right )}{3 \sqrt [4]{a}}+\frac {2 \tanh ^{-1}\left (\frac {\sqrt [4]{a} \left (a x^4+b x\right )^{3/4}}{a x^3+b}\right )}{3 \sqrt [4]{a}}+\frac {4 \left (a x^4+b x\right )^{3/4} \left (a x^3+b\right )}{21 b x^6} \]

________________________________________________________________________________________

Rubi [A]  time = 0.28, antiderivative size = 167, normalized size of antiderivative = 1.56, number of steps used = 12, number of rules used = 10, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {2052, 2011, 329, 275, 240, 212, 206, 203, 2016, 2014} \begin {gather*} \frac {4 \left (a x^4+b x\right )^{3/4}}{21 x^6}+\frac {4 a \left (a x^4+b x\right )^{3/4}}{21 b x^3}+\frac {2 \sqrt [4]{x} \sqrt [4]{a x^3+b} \tan ^{-1}\left (\frac {\sqrt [4]{a} x^{3/4}}{\sqrt [4]{a x^3+b}}\right )}{3 \sqrt [4]{a} \sqrt [4]{a x^4+b x}}+\frac {2 \sqrt [4]{x} \sqrt [4]{a x^3+b} \tanh ^{-1}\left (\frac {\sqrt [4]{a} x^{3/4}}{\sqrt [4]{a x^3+b}}\right )}{3 \sqrt [4]{a} \sqrt [4]{a x^4+b x}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(-b - a*x^3 + x^6)/(x^6*(b*x + a*x^4)^(1/4)),x]

[Out]

(4*(b*x + a*x^4)^(3/4))/(21*x^6) + (4*a*(b*x + a*x^4)^(3/4))/(21*b*x^3) + (2*x^(1/4)*(b + a*x^3)^(1/4)*ArcTan[
(a^(1/4)*x^(3/4))/(b + a*x^3)^(1/4)])/(3*a^(1/4)*(b*x + a*x^4)^(1/4)) + (2*x^(1/4)*(b + a*x^3)^(1/4)*ArcTanh[(
a^(1/4)*x^(3/4))/(b + a*x^3)^(1/4)])/(3*a^(1/4)*(b*x + a*x^4)^(1/4))

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b), 2]
]}, Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
 !GtQ[a/b, 0]

Rule 240

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^(p + 1/n), Subst[Int[1/(1 - b*x^n)^(p + 1/n + 1), x], x
, x/(a + b*x^n)^(1/n)], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[p, -2^(-1)] && IntegerQ[p
 + 1/n]

Rule 275

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 2011

Int[((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Dist[(a*x^j + b*x^n)^FracPart[p]/(x^(j*FracPart[p
])*(a + b*x^(n - j))^FracPart[p]), Int[x^(j*p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, j, n, p}, x] &&  !I
ntegerQ[p] && NeQ[n, j] && PosQ[n - j]

Rule 2014

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> -Simp[(c^(j - 1)*(c*x)^(m - j
+ 1)*(a*x^j + b*x^n)^(p + 1))/(a*(n - j)*(p + 1)), x] /; FreeQ[{a, b, c, j, m, n, p}, x] &&  !IntegerQ[p] && N
eQ[n, j] && EqQ[m + n*p + n - j + 1, 0] && (IntegerQ[j] || GtQ[c, 0])

Rule 2016

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(c^(j - 1)*(c*x)^(m - j +
 1)*(a*x^j + b*x^n)^(p + 1))/(a*(m + j*p + 1)), x] - Dist[(b*(m + n*p + n - j + 1))/(a*c^(n - j)*(m + j*p + 1)
), Int[(c*x)^(m + n - j)*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[
n, j] && ILtQ[Simplify[(m + n*p + n - j + 1)/(n - j)], 0] && NeQ[m + j*p + 1, 0] && (IntegersQ[j, n] || GtQ[c,
 0])

Rule 2052

Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[ExpandIntegrand[(c*x)
^m*Pq*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] && (PolyQ[Pq, x] || PolyQ[Pq, x^n]) &&  !In
tegerQ[p] && NeQ[n, j]

Rubi steps

\begin {align*} \int \frac {-b-a x^3+x^6}{x^6 \sqrt [4]{b x+a x^4}} \, dx &=\int \left (\frac {1}{\sqrt [4]{b x+a x^4}}-\frac {b}{x^6 \sqrt [4]{b x+a x^4}}-\frac {a}{x^3 \sqrt [4]{b x+a x^4}}\right ) \, dx\\ &=-\left (a \int \frac {1}{x^3 \sqrt [4]{b x+a x^4}} \, dx\right )-b \int \frac {1}{x^6 \sqrt [4]{b x+a x^4}} \, dx+\int \frac {1}{\sqrt [4]{b x+a x^4}} \, dx\\ &=\frac {4 \left (b x+a x^4\right )^{3/4}}{21 x^6}+\frac {4 a \left (b x+a x^4\right )^{3/4}}{9 b x^3}+\frac {1}{7} (4 a) \int \frac {1}{x^3 \sqrt [4]{b x+a x^4}} \, dx+\frac {\left (\sqrt [4]{x} \sqrt [4]{b+a x^3}\right ) \int \frac {1}{\sqrt [4]{x} \sqrt [4]{b+a x^3}} \, dx}{\sqrt [4]{b x+a x^4}}\\ &=\frac {4 \left (b x+a x^4\right )^{3/4}}{21 x^6}+\frac {4 a \left (b x+a x^4\right )^{3/4}}{21 b x^3}+\frac {\left (4 \sqrt [4]{x} \sqrt [4]{b+a x^3}\right ) \operatorname {Subst}\left (\int \frac {x^2}{\sqrt [4]{b+a x^{12}}} \, dx,x,\sqrt [4]{x}\right )}{\sqrt [4]{b x+a x^4}}\\ &=\frac {4 \left (b x+a x^4\right )^{3/4}}{21 x^6}+\frac {4 a \left (b x+a x^4\right )^{3/4}}{21 b x^3}+\frac {\left (4 \sqrt [4]{x} \sqrt [4]{b+a x^3}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt [4]{b+a x^4}} \, dx,x,x^{3/4}\right )}{3 \sqrt [4]{b x+a x^4}}\\ &=\frac {4 \left (b x+a x^4\right )^{3/4}}{21 x^6}+\frac {4 a \left (b x+a x^4\right )^{3/4}}{21 b x^3}+\frac {\left (4 \sqrt [4]{x} \sqrt [4]{b+a x^3}\right ) \operatorname {Subst}\left (\int \frac {1}{1-a x^4} \, dx,x,\frac {x^{3/4}}{\sqrt [4]{b+a x^3}}\right )}{3 \sqrt [4]{b x+a x^4}}\\ &=\frac {4 \left (b x+a x^4\right )^{3/4}}{21 x^6}+\frac {4 a \left (b x+a x^4\right )^{3/4}}{21 b x^3}+\frac {\left (2 \sqrt [4]{x} \sqrt [4]{b+a x^3}\right ) \operatorname {Subst}\left (\int \frac {1}{1-\sqrt {a} x^2} \, dx,x,\frac {x^{3/4}}{\sqrt [4]{b+a x^3}}\right )}{3 \sqrt [4]{b x+a x^4}}+\frac {\left (2 \sqrt [4]{x} \sqrt [4]{b+a x^3}\right ) \operatorname {Subst}\left (\int \frac {1}{1+\sqrt {a} x^2} \, dx,x,\frac {x^{3/4}}{\sqrt [4]{b+a x^3}}\right )}{3 \sqrt [4]{b x+a x^4}}\\ &=\frac {4 \left (b x+a x^4\right )^{3/4}}{21 x^6}+\frac {4 a \left (b x+a x^4\right )^{3/4}}{21 b x^3}+\frac {2 \sqrt [4]{x} \sqrt [4]{b+a x^3} \tan ^{-1}\left (\frac {\sqrt [4]{a} x^{3/4}}{\sqrt [4]{b+a x^3}}\right )}{3 \sqrt [4]{a} \sqrt [4]{b x+a x^4}}+\frac {2 \sqrt [4]{x} \sqrt [4]{b+a x^3} \tanh ^{-1}\left (\frac {\sqrt [4]{a} x^{3/4}}{\sqrt [4]{b+a x^3}}\right )}{3 \sqrt [4]{a} \sqrt [4]{b x+a x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.05, size = 72, normalized size = 0.67 \begin {gather*} \frac {4 \left (7 b x^6 \sqrt [4]{\frac {a x^3}{b}+1} \, _2F_1\left (\frac {1}{4},\frac {1}{4};\frac {5}{4};-\frac {a x^3}{b}\right )+\left (a x^3+b\right )^2\right )}{21 b x^5 \sqrt [4]{x \left (a x^3+b\right )}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(-b - a*x^3 + x^6)/(x^6*(b*x + a*x^4)^(1/4)),x]

[Out]

(4*((b + a*x^3)^2 + 7*b*x^6*(1 + (a*x^3)/b)^(1/4)*Hypergeometric2F1[1/4, 1/4, 5/4, -((a*x^3)/b)]))/(21*b*x^5*(
x*(b + a*x^3))^(1/4))

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.41, size = 107, normalized size = 1.00 \begin {gather*} \frac {4 \left (b+a x^3\right ) \left (b x+a x^4\right )^{3/4}}{21 b x^6}+\frac {2 \tan ^{-1}\left (\frac {\sqrt [4]{a} \left (b x+a x^4\right )^{3/4}}{b+a x^3}\right )}{3 \sqrt [4]{a}}+\frac {2 \tanh ^{-1}\left (\frac {\sqrt [4]{a} \left (b x+a x^4\right )^{3/4}}{b+a x^3}\right )}{3 \sqrt [4]{a}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(-b - a*x^3 + x^6)/(x^6*(b*x + a*x^4)^(1/4)),x]

[Out]

(4*(b + a*x^3)*(b*x + a*x^4)^(3/4))/(21*b*x^6) + (2*ArcTan[(a^(1/4)*(b*x + a*x^4)^(3/4))/(b + a*x^3)])/(3*a^(1
/4)) + (2*ArcTanh[(a^(1/4)*(b*x + a*x^4)^(3/4))/(b + a*x^3)])/(3*a^(1/4))

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^6-a*x^3-b)/x^6/(a*x^4+b*x)^(1/4),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [B]  time = 0.19, size = 191, normalized size = 1.79 \begin {gather*} -\frac {\sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (-a\right )^{\frac {1}{4}} + 2 \, {\left (a + \frac {b}{x^{3}}\right )}^{\frac {1}{4}}\right )}}{2 \, \left (-a\right )^{\frac {1}{4}}}\right )}{3 \, \left (-a\right )^{\frac {1}{4}}} - \frac {\sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (-a\right )^{\frac {1}{4}} - 2 \, {\left (a + \frac {b}{x^{3}}\right )}^{\frac {1}{4}}\right )}}{2 \, \left (-a\right )^{\frac {1}{4}}}\right )}{3 \, \left (-a\right )^{\frac {1}{4}}} + \frac {\sqrt {2} \log \left (\sqrt {2} \left (-a\right )^{\frac {1}{4}} {\left (a + \frac {b}{x^{3}}\right )}^{\frac {1}{4}} + \sqrt {-a} + \sqrt {a + \frac {b}{x^{3}}}\right )}{6 \, \left (-a\right )^{\frac {1}{4}}} + \frac {\sqrt {2} \left (-a\right )^{\frac {3}{4}} \log \left (-\sqrt {2} \left (-a\right )^{\frac {1}{4}} {\left (a + \frac {b}{x^{3}}\right )}^{\frac {1}{4}} + \sqrt {-a} + \sqrt {a + \frac {b}{x^{3}}}\right )}{6 \, a} + \frac {4 \, {\left (a + \frac {b}{x^{3}}\right )}^{\frac {7}{4}}}{21 \, b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^6-a*x^3-b)/x^6/(a*x^4+b*x)^(1/4),x, algorithm="giac")

[Out]

-1/3*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*(-a)^(1/4) + 2*(a + b/x^3)^(1/4))/(-a)^(1/4))/(-a)^(1/4) - 1/3*sqrt(2
)*arctan(-1/2*sqrt(2)*(sqrt(2)*(-a)^(1/4) - 2*(a + b/x^3)^(1/4))/(-a)^(1/4))/(-a)^(1/4) + 1/6*sqrt(2)*log(sqrt
(2)*(-a)^(1/4)*(a + b/x^3)^(1/4) + sqrt(-a) + sqrt(a + b/x^3))/(-a)^(1/4) + 1/6*sqrt(2)*(-a)^(3/4)*log(-sqrt(2
)*(-a)^(1/4)*(a + b/x^3)^(1/4) + sqrt(-a) + sqrt(a + b/x^3))/a + 4/21*(a + b/x^3)^(7/4)/b

________________________________________________________________________________________

maple [F]  time = 0.01, size = 0, normalized size = 0.00 \[\int \frac {x^{6}-a \,x^{3}-b}{x^{6} \left (a \,x^{4}+b x \right )^{\frac {1}{4}}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^6-a*x^3-b)/x^6/(a*x^4+b*x)^(1/4),x)

[Out]

int((x^6-a*x^3-b)/x^6/(a*x^4+b*x)^(1/4),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{6} - a x^{3} - b}{{\left (a x^{4} + b x\right )}^{\frac {1}{4}} x^{6}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^6-a*x^3-b)/x^6/(a*x^4+b*x)^(1/4),x, algorithm="maxima")

[Out]

integrate((x^6 - a*x^3 - b)/((a*x^4 + b*x)^(1/4)*x^6), x)

________________________________________________________________________________________

mupad [B]  time = 1.31, size = 77, normalized size = 0.72 \begin {gather*} \frac {4\,{\left (a\,x^4+b\,x\right )}^{3/4}}{21\,x^6}+\frac {4\,x\,{\left (\frac {a\,x^3}{b}+1\right )}^{1/4}\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{4},\frac {1}{4};\ \frac {5}{4};\ -\frac {a\,x^3}{b}\right )}{3\,{\left (a\,x^4+b\,x\right )}^{1/4}}+\frac {4\,a\,{\left (a\,x^4+b\,x\right )}^{3/4}}{21\,b\,x^3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(b + a*x^3 - x^6)/(x^6*(b*x + a*x^4)^(1/4)),x)

[Out]

(4*(b*x + a*x^4)^(3/4))/(21*x^6) + (4*x*((a*x^3)/b + 1)^(1/4)*hypergeom([1/4, 1/4], 5/4, -(a*x^3)/b))/(3*(b*x
+ a*x^4)^(1/4)) + (4*a*(b*x + a*x^4)^(3/4))/(21*b*x^3)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {- a x^{3} - b + x^{6}}{x^{6} \sqrt [4]{x \left (a x^{3} + b\right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x**6-a*x**3-b)/x**6/(a*x**4+b*x)**(1/4),x)

[Out]

Integral((-a*x**3 - b + x**6)/(x**6*(x*(a*x**3 + b))**(1/4)), x)

________________________________________________________________________________________