3.16.6 \(\int \frac {-b+a x^2}{(b+a x^4) \sqrt [4]{b x^2+a x^4}} \, dx\)

Optimal. Leaf size=105 \[ -\frac {1}{4} \text {RootSum}\left [\text {$\#$1}^8-2 \text {$\#$1}^4 a+a^2+a b\& ,\frac {\text {$\#$1}^4 \log \left (\sqrt [4]{a x^4+b x^2}-\text {$\#$1} x\right )+\text {$\#$1}^4 (-\log (x))-2 a \log \left (\sqrt [4]{a x^4+b x^2}-\text {$\#$1} x\right )+2 a \log (x)}{\text {$\#$1} a-\text {$\#$1}^5}\& \right ] \]

________________________________________________________________________________________

Rubi [B]  time = 1.01, antiderivative size = 445, normalized size of antiderivative = 4.24, number of steps used = 12, number of rules used = 7, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.206, Rules used = {2056, 6715, 6725, 377, 212, 206, 203} \begin {gather*} \frac {\sqrt {x} \left (\sqrt {-a}-\sqrt {b}\right ) \sqrt [4]{a x^2+b} \tan ^{-1}\left (\frac {\sqrt {x} \sqrt [4]{a-\sqrt {-a} \sqrt {b}}}{\sqrt [4]{a x^2+b}}\right )}{2 \sqrt {b} \sqrt [4]{a-\sqrt {-a} \sqrt {b}} \sqrt [4]{a x^4+b x^2}}-\frac {\sqrt {x} \left (\sqrt {-a}+\sqrt {b}\right ) \sqrt [4]{a x^2+b} \tan ^{-1}\left (\frac {\sqrt {x} \sqrt [4]{\sqrt {-a} \sqrt {b}+a}}{\sqrt [4]{a x^2+b}}\right )}{2 \sqrt {b} \sqrt [4]{\sqrt {-a} \sqrt {b}+a} \sqrt [4]{a x^4+b x^2}}+\frac {\sqrt {x} \left (\sqrt {-a}-\sqrt {b}\right ) \sqrt [4]{a x^2+b} \tanh ^{-1}\left (\frac {\sqrt {x} \sqrt [4]{a-\sqrt {-a} \sqrt {b}}}{\sqrt [4]{a x^2+b}}\right )}{2 \sqrt {b} \sqrt [4]{a-\sqrt {-a} \sqrt {b}} \sqrt [4]{a x^4+b x^2}}-\frac {\sqrt {x} \left (\sqrt {-a}+\sqrt {b}\right ) \sqrt [4]{a x^2+b} \tanh ^{-1}\left (\frac {\sqrt {x} \sqrt [4]{\sqrt {-a} \sqrt {b}+a}}{\sqrt [4]{a x^2+b}}\right )}{2 \sqrt {b} \sqrt [4]{\sqrt {-a} \sqrt {b}+a} \sqrt [4]{a x^4+b x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(-b + a*x^2)/((b + a*x^4)*(b*x^2 + a*x^4)^(1/4)),x]

[Out]

((Sqrt[-a] - Sqrt[b])*Sqrt[x]*(b + a*x^2)^(1/4)*ArcTan[((a - Sqrt[-a]*Sqrt[b])^(1/4)*Sqrt[x])/(b + a*x^2)^(1/4
)])/(2*(a - Sqrt[-a]*Sqrt[b])^(1/4)*Sqrt[b]*(b*x^2 + a*x^4)^(1/4)) - ((Sqrt[-a] + Sqrt[b])*Sqrt[x]*(b + a*x^2)
^(1/4)*ArcTan[((a + Sqrt[-a]*Sqrt[b])^(1/4)*Sqrt[x])/(b + a*x^2)^(1/4)])/(2*(a + Sqrt[-a]*Sqrt[b])^(1/4)*Sqrt[
b]*(b*x^2 + a*x^4)^(1/4)) + ((Sqrt[-a] - Sqrt[b])*Sqrt[x]*(b + a*x^2)^(1/4)*ArcTanh[((a - Sqrt[-a]*Sqrt[b])^(1
/4)*Sqrt[x])/(b + a*x^2)^(1/4)])/(2*(a - Sqrt[-a]*Sqrt[b])^(1/4)*Sqrt[b]*(b*x^2 + a*x^4)^(1/4)) - ((Sqrt[-a] +
 Sqrt[b])*Sqrt[x]*(b + a*x^2)^(1/4)*ArcTanh[((a + Sqrt[-a]*Sqrt[b])^(1/4)*Sqrt[x])/(b + a*x^2)^(1/4)])/(2*(a +
 Sqrt[-a]*Sqrt[b])^(1/4)*Sqrt[b]*(b*x^2 + a*x^4)^(1/4))

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b), 2]
]}, Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
 !GtQ[a/b, 0]

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 2056

Int[(u_.)*(P_)^(p_.), x_Symbol] :> With[{m = MinimumMonomialExponent[P, x]}, Dist[P^FracPart[p]/(x^(m*FracPart
[p])*Distrib[1/x^m, P]^FracPart[p]), Int[u*x^(m*p)*Distrib[1/x^m, P]^p, x], x]] /; FreeQ[p, x] &&  !IntegerQ[p
] && SumQ[P] && EveryQ[BinomialQ[#1, x] & , P] &&  !PolyQ[P, x, 2]

Rule 6715

Int[(u_)*(x_)^(m_.), x_Symbol] :> Dist[1/(m + 1), Subst[Int[SubstFor[x^(m + 1), u, x], x], x, x^(m + 1)], x] /
; FreeQ[m, x] && NeQ[m, -1] && FunctionOfQ[x^(m + 1), u, x]

Rule 6725

Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
 /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {-b+a x^2}{\left (b+a x^4\right ) \sqrt [4]{b x^2+a x^4}} \, dx &=\frac {\left (\sqrt {x} \sqrt [4]{b+a x^2}\right ) \int \frac {-b+a x^2}{\sqrt {x} \sqrt [4]{b+a x^2} \left (b+a x^4\right )} \, dx}{\sqrt [4]{b x^2+a x^4}}\\ &=\frac {\left (2 \sqrt {x} \sqrt [4]{b+a x^2}\right ) \operatorname {Subst}\left (\int \frac {-b+a x^4}{\sqrt [4]{b+a x^4} \left (b+a x^8\right )} \, dx,x,\sqrt {x}\right )}{\sqrt [4]{b x^2+a x^4}}\\ &=\frac {\left (2 \sqrt {x} \sqrt [4]{b+a x^2}\right ) \operatorname {Subst}\left (\int \left (-\frac {\sqrt {-a} \left (a \sqrt {b}-\sqrt {-a} b\right )}{2 a \sqrt {b} \left (\sqrt {b}-\sqrt {-a} x^4\right ) \sqrt [4]{b+a x^4}}+\frac {\sqrt {-a} \left (a \sqrt {b}+\sqrt {-a} b\right )}{2 a \sqrt {b} \left (\sqrt {b}+\sqrt {-a} x^4\right ) \sqrt [4]{b+a x^4}}\right ) \, dx,x,\sqrt {x}\right )}{\sqrt [4]{b x^2+a x^4}}\\ &=\frac {\left (\left (\sqrt {-a}-\sqrt {b}\right ) \sqrt {x} \sqrt [4]{b+a x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\left (\sqrt {b}+\sqrt {-a} x^4\right ) \sqrt [4]{b+a x^4}} \, dx,x,\sqrt {x}\right )}{\sqrt [4]{b x^2+a x^4}}-\frac {\left (\left (\sqrt {-a}+\sqrt {b}\right ) \sqrt {x} \sqrt [4]{b+a x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\left (\sqrt {b}-\sqrt {-a} x^4\right ) \sqrt [4]{b+a x^4}} \, dx,x,\sqrt {x}\right )}{\sqrt [4]{b x^2+a x^4}}\\ &=\frac {\left (\left (\sqrt {-a}-\sqrt {b}\right ) \sqrt {x} \sqrt [4]{b+a x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {b}-\left (a \sqrt {b}-\sqrt {-a} b\right ) x^4} \, dx,x,\frac {\sqrt {x}}{\sqrt [4]{b+a x^2}}\right )}{\sqrt [4]{b x^2+a x^4}}-\frac {\left (\left (\sqrt {-a}+\sqrt {b}\right ) \sqrt {x} \sqrt [4]{b+a x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {b}-\left (a \sqrt {b}+\sqrt {-a} b\right ) x^4} \, dx,x,\frac {\sqrt {x}}{\sqrt [4]{b+a x^2}}\right )}{\sqrt [4]{b x^2+a x^4}}\\ &=\frac {\left (\left (\sqrt {-a}-\sqrt {b}\right ) \sqrt {x} \sqrt [4]{b+a x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{1-\sqrt {a-\sqrt {-a} \sqrt {b}} x^2} \, dx,x,\frac {\sqrt {x}}{\sqrt [4]{b+a x^2}}\right )}{2 \sqrt {b} \sqrt [4]{b x^2+a x^4}}+\frac {\left (\left (\sqrt {-a}-\sqrt {b}\right ) \sqrt {x} \sqrt [4]{b+a x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{1+\sqrt {a-\sqrt {-a} \sqrt {b}} x^2} \, dx,x,\frac {\sqrt {x}}{\sqrt [4]{b+a x^2}}\right )}{2 \sqrt {b} \sqrt [4]{b x^2+a x^4}}-\frac {\left (\left (\sqrt {-a}+\sqrt {b}\right ) \sqrt {x} \sqrt [4]{b+a x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{1-\sqrt {a+\sqrt {-a} \sqrt {b}} x^2} \, dx,x,\frac {\sqrt {x}}{\sqrt [4]{b+a x^2}}\right )}{2 \sqrt {b} \sqrt [4]{b x^2+a x^4}}-\frac {\left (\left (\sqrt {-a}+\sqrt {b}\right ) \sqrt {x} \sqrt [4]{b+a x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{1+\sqrt {a+\sqrt {-a} \sqrt {b}} x^2} \, dx,x,\frac {\sqrt {x}}{\sqrt [4]{b+a x^2}}\right )}{2 \sqrt {b} \sqrt [4]{b x^2+a x^4}}\\ &=\frac {\left (\sqrt {-a}-\sqrt {b}\right ) \sqrt {x} \sqrt [4]{b+a x^2} \tan ^{-1}\left (\frac {\sqrt [4]{a-\sqrt {-a} \sqrt {b}} \sqrt {x}}{\sqrt [4]{b+a x^2}}\right )}{2 \sqrt [4]{a-\sqrt {-a} \sqrt {b}} \sqrt {b} \sqrt [4]{b x^2+a x^4}}-\frac {\left (\sqrt {-a}+\sqrt {b}\right ) \sqrt {x} \sqrt [4]{b+a x^2} \tan ^{-1}\left (\frac {\sqrt [4]{a+\sqrt {-a} \sqrt {b}} \sqrt {x}}{\sqrt [4]{b+a x^2}}\right )}{2 \sqrt [4]{a+\sqrt {-a} \sqrt {b}} \sqrt {b} \sqrt [4]{b x^2+a x^4}}+\frac {\left (\sqrt {-a}-\sqrt {b}\right ) \sqrt {x} \sqrt [4]{b+a x^2} \tanh ^{-1}\left (\frac {\sqrt [4]{a-\sqrt {-a} \sqrt {b}} \sqrt {x}}{\sqrt [4]{b+a x^2}}\right )}{2 \sqrt [4]{a-\sqrt {-a} \sqrt {b}} \sqrt {b} \sqrt [4]{b x^2+a x^4}}-\frac {\left (\sqrt {-a}+\sqrt {b}\right ) \sqrt {x} \sqrt [4]{b+a x^2} \tanh ^{-1}\left (\frac {\sqrt [4]{a+\sqrt {-a} \sqrt {b}} \sqrt {x}}{\sqrt [4]{b+a x^2}}\right )}{2 \sqrt [4]{a+\sqrt {-a} \sqrt {b}} \sqrt {b} \sqrt [4]{b x^2+a x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 0.50, size = 448, normalized size = 4.27 \begin {gather*} \frac {x \sqrt [4]{a+\frac {b}{x^2}} \left (\sqrt {b} \sqrt [4]{\sqrt {-a} \sqrt {b}+a} \tan ^{-1}\left (\frac {\sqrt [4]{a+\frac {b}{x^2}}}{\sqrt [4]{a-\sqrt {-a} \sqrt {b}}}\right )-\sqrt {-a} \sqrt [4]{\sqrt {-a} \sqrt {b}+a} \tan ^{-1}\left (\frac {\sqrt [4]{a+\frac {b}{x^2}}}{\sqrt [4]{a-\sqrt {-a} \sqrt {b}}}\right )+\sqrt {b} \sqrt [4]{a-\sqrt {-a} \sqrt {b}} \tan ^{-1}\left (\frac {\sqrt [4]{a+\frac {b}{x^2}}}{\sqrt [4]{\sqrt {-a} \sqrt {b}+a}}\right )+\sqrt {-a} \sqrt [4]{a-\sqrt {-a} \sqrt {b}} \tan ^{-1}\left (\frac {\sqrt [4]{a+\frac {b}{x^2}}}{\sqrt [4]{\sqrt {-a} \sqrt {b}+a}}\right )+\left (\sqrt {-a}-\sqrt {b}\right ) \sqrt [4]{\sqrt {-a} \sqrt {b}+a} \tanh ^{-1}\left (\frac {\sqrt [4]{a+\frac {b}{x^2}}}{\sqrt [4]{a-\sqrt {-a} \sqrt {b}}}\right )-\left (\sqrt {-a}+\sqrt {b}\right ) \sqrt [4]{a-\sqrt {-a} \sqrt {b}} \tanh ^{-1}\left (\frac {\sqrt [4]{a+\frac {b}{x^2}}}{\sqrt [4]{\sqrt {-a} \sqrt {b}+a}}\right )\right )}{2 \sqrt {b} \sqrt [4]{a-\sqrt {-a} \sqrt {b}} \sqrt [4]{\sqrt {-a} \sqrt {b}+a} \sqrt [4]{x^2 \left (a x^2+b\right )}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(-b + a*x^2)/((b + a*x^4)*(b*x^2 + a*x^4)^(1/4)),x]

[Out]

((a + b/x^2)^(1/4)*x*(-(Sqrt[-a]*(a + Sqrt[-a]*Sqrt[b])^(1/4)*ArcTan[(a + b/x^2)^(1/4)/(a - Sqrt[-a]*Sqrt[b])^
(1/4)]) + (a + Sqrt[-a]*Sqrt[b])^(1/4)*Sqrt[b]*ArcTan[(a + b/x^2)^(1/4)/(a - Sqrt[-a]*Sqrt[b])^(1/4)] + Sqrt[-
a]*(a - Sqrt[-a]*Sqrt[b])^(1/4)*ArcTan[(a + b/x^2)^(1/4)/(a + Sqrt[-a]*Sqrt[b])^(1/4)] + (a - Sqrt[-a]*Sqrt[b]
)^(1/4)*Sqrt[b]*ArcTan[(a + b/x^2)^(1/4)/(a + Sqrt[-a]*Sqrt[b])^(1/4)] + (Sqrt[-a] - Sqrt[b])*(a + Sqrt[-a]*Sq
rt[b])^(1/4)*ArcTanh[(a + b/x^2)^(1/4)/(a - Sqrt[-a]*Sqrt[b])^(1/4)] - (Sqrt[-a] + Sqrt[b])*(a - Sqrt[-a]*Sqrt
[b])^(1/4)*ArcTanh[(a + b/x^2)^(1/4)/(a + Sqrt[-a]*Sqrt[b])^(1/4)]))/(2*(a - Sqrt[-a]*Sqrt[b])^(1/4)*(a + Sqrt
[-a]*Sqrt[b])^(1/4)*Sqrt[b]*(x^2*(b + a*x^2))^(1/4))

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.00, size = 104, normalized size = 0.99 \begin {gather*} -\frac {1}{4} \text {RootSum}\left [a^2+a b-2 a \text {$\#$1}^4+\text {$\#$1}^8\&,\frac {-2 a \log (x)+2 a \log \left (\sqrt [4]{b x^2+a x^4}-x \text {$\#$1}\right )+\log (x) \text {$\#$1}^4-\log \left (\sqrt [4]{b x^2+a x^4}-x \text {$\#$1}\right ) \text {$\#$1}^4}{-a \text {$\#$1}+\text {$\#$1}^5}\&\right ] \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(-b + a*x^2)/((b + a*x^4)*(b*x^2 + a*x^4)^(1/4)),x]

[Out]

-1/4*RootSum[a^2 + a*b - 2*a*#1^4 + #1^8 & , (-2*a*Log[x] + 2*a*Log[(b*x^2 + a*x^4)^(1/4) - x*#1] + Log[x]*#1^
4 - Log[(b*x^2 + a*x^4)^(1/4) - x*#1]*#1^4)/(-(a*#1) + #1^5) & ]

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x^2-b)/(a*x^4+b)/(a*x^4+b*x^2)^(1/4),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {a x^{2} - b}{{\left (a x^{4} + b x^{2}\right )}^{\frac {1}{4}} {\left (a x^{4} + b\right )}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x^2-b)/(a*x^4+b)/(a*x^4+b*x^2)^(1/4),x, algorithm="giac")

[Out]

integrate((a*x^2 - b)/((a*x^4 + b*x^2)^(1/4)*(a*x^4 + b)), x)

________________________________________________________________________________________

maple [F]  time = 0.00, size = 0, normalized size = 0.00 \[\int \frac {a \,x^{2}-b}{\left (a \,x^{4}+b \right ) \left (a \,x^{4}+b \,x^{2}\right )^{\frac {1}{4}}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x^2-b)/(a*x^4+b)/(a*x^4+b*x^2)^(1/4),x)

[Out]

int((a*x^2-b)/(a*x^4+b)/(a*x^4+b*x^2)^(1/4),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {a x^{2} - b}{{\left (a x^{4} + b x^{2}\right )}^{\frac {1}{4}} {\left (a x^{4} + b\right )}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x^2-b)/(a*x^4+b)/(a*x^4+b*x^2)^(1/4),x, algorithm="maxima")

[Out]

integrate((a*x^2 - b)/((a*x^4 + b*x^2)^(1/4)*(a*x^4 + b)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int -\frac {b-a\,x^2}{\left (a\,x^4+b\right )\,{\left (a\,x^4+b\,x^2\right )}^{1/4}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(b - a*x^2)/((b + a*x^4)*(a*x^4 + b*x^2)^(1/4)),x)

[Out]

int(-(b - a*x^2)/((b + a*x^4)*(a*x^4 + b*x^2)^(1/4)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {a x^{2} - b}{\sqrt [4]{x^{2} \left (a x^{2} + b\right )} \left (a x^{4} + b\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x**2-b)/(a*x**4+b)/(a*x**4+b*x**2)**(1/4),x)

[Out]

Integral((a*x**2 - b)/((x**2*(a*x**2 + b))**(1/4)*(a*x**4 + b)), x)

________________________________________________________________________________________