3.15.82 \(\int \frac {-b+a x^4}{x^4 \sqrt [4]{-b+2 a x^4}} \, dx\)

Optimal. Leaf size=104 \[ \frac {a^{3/4} \tan ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{a} x}{\sqrt [4]{2 a x^4-b}}\right )}{2 \sqrt [4]{2}}+\frac {a^{3/4} \tanh ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{a} x}{\sqrt [4]{2 a x^4-b}}\right )}{2 \sqrt [4]{2}}-\frac {\left (2 a x^4-b\right )^{3/4}}{3 x^3} \]

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 104, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {451, 240, 212, 206, 203} \begin {gather*} \frac {a^{3/4} \tan ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{a} x}{\sqrt [4]{2 a x^4-b}}\right )}{2 \sqrt [4]{2}}+\frac {a^{3/4} \tanh ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{a} x}{\sqrt [4]{2 a x^4-b}}\right )}{2 \sqrt [4]{2}}-\frac {\left (2 a x^4-b\right )^{3/4}}{3 x^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(-b + a*x^4)/(x^4*(-b + 2*a*x^4)^(1/4)),x]

[Out]

-1/3*(-b + 2*a*x^4)^(3/4)/x^3 + (a^(3/4)*ArcTan[(2^(1/4)*a^(1/4)*x)/(-b + 2*a*x^4)^(1/4)])/(2*2^(1/4)) + (a^(3
/4)*ArcTanh[(2^(1/4)*a^(1/4)*x)/(-b + 2*a*x^4)^(1/4)])/(2*2^(1/4))

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b), 2]
]}, Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
 !GtQ[a/b, 0]

Rule 240

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^(p + 1/n), Subst[Int[1/(1 - b*x^n)^(p + 1/n + 1), x], x
, x/(a + b*x^n)^(1/n)], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[p, -2^(-1)] && IntegerQ[p
 + 1/n]

Rule 451

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(c*(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1))/(a*e*(m + 1)), x] + Dist[d/e^n, Int[(e*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a,
 b, c, d, e, m, n, p}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n*(p + 1) + 1, 0] && (IntegerQ[n] || GtQ[e, 0]) && (
(GtQ[n, 0] && LtQ[m, -1]) || (LtQ[n, 0] && GtQ[m + n, -1]))

Rubi steps

\begin {align*} \int \frac {-b+a x^4}{x^4 \sqrt [4]{-b+2 a x^4}} \, dx &=-\frac {\left (-b+2 a x^4\right )^{3/4}}{3 x^3}+a \int \frac {1}{\sqrt [4]{-b+2 a x^4}} \, dx\\ &=-\frac {\left (-b+2 a x^4\right )^{3/4}}{3 x^3}+a \operatorname {Subst}\left (\int \frac {1}{1-2 a x^4} \, dx,x,\frac {x}{\sqrt [4]{-b+2 a x^4}}\right )\\ &=-\frac {\left (-b+2 a x^4\right )^{3/4}}{3 x^3}+\frac {1}{2} a \operatorname {Subst}\left (\int \frac {1}{1-\sqrt {2} \sqrt {a} x^2} \, dx,x,\frac {x}{\sqrt [4]{-b+2 a x^4}}\right )+\frac {1}{2} a \operatorname {Subst}\left (\int \frac {1}{1+\sqrt {2} \sqrt {a} x^2} \, dx,x,\frac {x}{\sqrt [4]{-b+2 a x^4}}\right )\\ &=-\frac {\left (-b+2 a x^4\right )^{3/4}}{3 x^3}+\frac {a^{3/4} \tan ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{a} x}{\sqrt [4]{-b+2 a x^4}}\right )}{2 \sqrt [4]{2}}+\frac {a^{3/4} \tanh ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{a} x}{\sqrt [4]{-b+2 a x^4}}\right )}{2 \sqrt [4]{2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.08, size = 104, normalized size = 1.00 \begin {gather*} \frac {a^{3/4} \tan ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{a} x}{\sqrt [4]{2 a x^4-b}}\right )}{2 \sqrt [4]{2}}+\frac {a^{3/4} \tanh ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{a} x}{\sqrt [4]{2 a x^4-b}}\right )}{2 \sqrt [4]{2}}-\frac {\left (2 a x^4-b\right )^{3/4}}{3 x^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(-b + a*x^4)/(x^4*(-b + 2*a*x^4)^(1/4)),x]

[Out]

-1/3*(-b + 2*a*x^4)^(3/4)/x^3 + (a^(3/4)*ArcTan[(2^(1/4)*a^(1/4)*x)/(-b + 2*a*x^4)^(1/4)])/(2*2^(1/4)) + (a^(3
/4)*ArcTanh[(2^(1/4)*a^(1/4)*x)/(-b + 2*a*x^4)^(1/4)])/(2*2^(1/4))

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.37, size = 104, normalized size = 1.00 \begin {gather*} -\frac {\left (-b+2 a x^4\right )^{3/4}}{3 x^3}+\frac {a^{3/4} \tan ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{a} x}{\sqrt [4]{-b+2 a x^4}}\right )}{2 \sqrt [4]{2}}+\frac {a^{3/4} \tanh ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{a} x}{\sqrt [4]{-b+2 a x^4}}\right )}{2 \sqrt [4]{2}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(-b + a*x^4)/(x^4*(-b + 2*a*x^4)^(1/4)),x]

[Out]

-1/3*(-b + 2*a*x^4)^(3/4)/x^3 + (a^(3/4)*ArcTan[(2^(1/4)*a^(1/4)*x)/(-b + 2*a*x^4)^(1/4)])/(2*2^(1/4)) + (a^(3
/4)*ArcTanh[(2^(1/4)*a^(1/4)*x)/(-b + 2*a*x^4)^(1/4)])/(2*2^(1/4))

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x^4-b)/x^4/(2*a*x^4-b)^(1/4),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {a x^{4} - b}{{\left (2 \, a x^{4} - b\right )}^{\frac {1}{4}} x^{4}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x^4-b)/x^4/(2*a*x^4-b)^(1/4),x, algorithm="giac")

[Out]

integrate((a*x^4 - b)/((2*a*x^4 - b)^(1/4)*x^4), x)

________________________________________________________________________________________

maple [F]  time = 0.01, size = 0, normalized size = 0.00 \[\int \frac {a \,x^{4}-b}{x^{4} \left (2 a \,x^{4}-b \right )^{\frac {1}{4}}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x^4-b)/x^4/(2*a*x^4-b)^(1/4),x)

[Out]

int((a*x^4-b)/x^4/(2*a*x^4-b)^(1/4),x)

________________________________________________________________________________________

maxima [A]  time = 0.41, size = 115, normalized size = 1.11 \begin {gather*} -\frac {1}{8} \, {\left (\frac {2 \cdot 2^{\frac {3}{4}} \arctan \left (\frac {2^{\frac {3}{4}} {\left (2 \, a x^{4} - b\right )}^{\frac {1}{4}}}{2 \, a^{\frac {1}{4}} x}\right )}{a^{\frac {1}{4}}} + \frac {2^{\frac {3}{4}} \log \left (-\frac {2^{\frac {1}{4}} a^{\frac {1}{4}} - \frac {{\left (2 \, a x^{4} - b\right )}^{\frac {1}{4}}}{x}}{2^{\frac {1}{4}} a^{\frac {1}{4}} + \frac {{\left (2 \, a x^{4} - b\right )}^{\frac {1}{4}}}{x}}\right )}{a^{\frac {1}{4}}}\right )} a - \frac {{\left (2 \, a x^{4} - b\right )}^{\frac {3}{4}}}{3 \, x^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x^4-b)/x^4/(2*a*x^4-b)^(1/4),x, algorithm="maxima")

[Out]

-1/8*(2*2^(3/4)*arctan(1/2*2^(3/4)*(2*a*x^4 - b)^(1/4)/(a^(1/4)*x))/a^(1/4) + 2^(3/4)*log(-(2^(1/4)*a^(1/4) -
(2*a*x^4 - b)^(1/4)/x)/(2^(1/4)*a^(1/4) + (2*a*x^4 - b)^(1/4)/x))/a^(1/4))*a - 1/3*(2*a*x^4 - b)^(3/4)/x^3

________________________________________________________________________________________

mupad [B]  time = 1.17, size = 60, normalized size = 0.58 \begin {gather*} \frac {a\,x\,{\left (1-\frac {2\,a\,x^4}{b}\right )}^{1/4}\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{4},\frac {1}{4};\ \frac {5}{4};\ \frac {2\,a\,x^4}{b}\right )}{{\left (2\,a\,x^4-b\right )}^{1/4}}-\frac {{\left (2\,a\,x^4-b\right )}^{3/4}}{3\,x^3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(b - a*x^4)/(x^4*(2*a*x^4 - b)^(1/4)),x)

[Out]

(a*x*(1 - (2*a*x^4)/b)^(1/4)*hypergeom([1/4, 1/4], 5/4, (2*a*x^4)/b))/(2*a*x^4 - b)^(1/4) - (2*a*x^4 - b)^(3/4
)/(3*x^3)

________________________________________________________________________________________

sympy [C]  time = 2.18, size = 141, normalized size = 1.36 \begin {gather*} \frac {a x e^{- \frac {i \pi }{4}} \Gamma \left (\frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{4}, \frac {1}{4} \\ \frac {5}{4} \end {matrix}\middle | {\frac {2 a x^{4}}{b}} \right )}}{4 \sqrt [4]{b} \Gamma \left (\frac {5}{4}\right )} - b \left (\begin {cases} - \frac {2^{\frac {3}{4}} a^{\frac {3}{4}} \left (-1 + \frac {b}{2 a x^{4}}\right )^{\frac {3}{4}} e^{\frac {3 i \pi }{4}} \Gamma \left (- \frac {3}{4}\right )}{4 b \Gamma \left (\frac {1}{4}\right )} & \text {for}\: \frac {\left |{\frac {b}{a x^{4}}}\right |}{2} > 1 \\- \frac {2^{\frac {3}{4}} a^{\frac {3}{4}} \left (1 - \frac {b}{2 a x^{4}}\right )^{\frac {3}{4}} \Gamma \left (- \frac {3}{4}\right )}{4 b \Gamma \left (\frac {1}{4}\right )} & \text {otherwise} \end {cases}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x**4-b)/x**4/(2*a*x**4-b)**(1/4),x)

[Out]

a*x*exp(-I*pi/4)*gamma(1/4)*hyper((1/4, 1/4), (5/4,), 2*a*x**4/b)/(4*b**(1/4)*gamma(5/4)) - b*Piecewise((-2**(
3/4)*a**(3/4)*(-1 + b/(2*a*x**4))**(3/4)*exp(3*I*pi/4)*gamma(-3/4)/(4*b*gamma(1/4)), Abs(b/(a*x**4))/2 > 1), (
-2**(3/4)*a**(3/4)*(1 - b/(2*a*x**4))**(3/4)*gamma(-3/4)/(4*b*gamma(1/4)), True))

________________________________________________________________________________________