3.12.94 \(\int \frac {\sqrt {x+\sqrt {1+x}}}{1-\sqrt {1+x}} \, dx\)

Optimal. Leaf size=87 \[ \frac {1}{2} \sqrt {x+\sqrt {x+1}} \left (-2 \sqrt {x+1}-5\right )+\frac {7}{4} \log \left (-2 \sqrt {x+1}+2 \sqrt {x+\sqrt {x+1}}-1\right )+4 \tanh ^{-1}\left (-\sqrt {x+1}+\sqrt {x+\sqrt {x+1}}+1\right ) \]

________________________________________________________________________________________

Rubi [A]  time = 0.15, antiderivative size = 93, normalized size of antiderivative = 1.07, number of steps used = 7, number of rules used = 5, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {814, 843, 621, 206, 724} \begin {gather*} -\frac {1}{2} \sqrt {x+\sqrt {x+1}} \left (2 \sqrt {x+1}+5\right )-2 \tanh ^{-1}\left (\frac {1-3 \sqrt {x+1}}{2 \sqrt {x+\sqrt {x+1}}}\right )-\frac {7}{4} \tanh ^{-1}\left (\frac {2 \sqrt {x+1}+1}{2 \sqrt {x+\sqrt {x+1}}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[x + Sqrt[1 + x]]/(1 - Sqrt[1 + x]),x]

[Out]

-1/2*(Sqrt[x + Sqrt[1 + x]]*(5 + 2*Sqrt[1 + x])) - 2*ArcTanh[(1 - 3*Sqrt[1 + x])/(2*Sqrt[x + Sqrt[1 + x]])] -
(7*ArcTanh[(1 + 2*Sqrt[1 + x])/(2*Sqrt[x + Sqrt[1 + x]])])/4

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 814

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[((d + e*x)^(m + 1)*(c*e*f*(m + 2*p + 2) - g*(c*d + 2*c*d*p - b*e*p) + g*c*e*(m + 2*p + 1)*x)*(a + b*x + c*x^
2)^p)/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2)), x] - Dist[p/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2)), Int[(d + e*x)^m*(a
 + b*x + c*x^2)^(p - 1)*Simp[c*e*f*(b*d - 2*a*e)*(m + 2*p + 2) + g*(a*e*(b*e - 2*c*d*m + b*e*m) + b*d*(b*e*p -
 c*d - 2*c*d*p)) + (c*e*f*(2*c*d - b*e)*(m + 2*p + 2) + g*(b^2*e^2*(p + m + 1) - 2*c^2*d^2*(1 + 2*p) - c*e*(b*
d*(m - 2*p) + 2*a*e*(m + 2*p + 1))))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[b^2 - 4*a*c, 0
] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && GtQ[p, 0] && (IntegerQ[p] ||  !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 0])
) &&  !ILtQ[m + 2*p, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {x+\sqrt {1+x}}}{1-\sqrt {1+x}} \, dx &=2 \operatorname {Subst}\left (\int \frac {x \sqrt {-1+x+x^2}}{1-x} \, dx,x,\sqrt {1+x}\right )\\ &=-\frac {1}{2} \sqrt {x+\sqrt {1+x}} \left (5+2 \sqrt {1+x}\right )-\frac {1}{2} \operatorname {Subst}\left (\int \frac {-\frac {1}{2}-\frac {7 x}{2}}{(1-x) \sqrt {-1+x+x^2}} \, dx,x,\sqrt {1+x}\right )\\ &=-\frac {1}{2} \sqrt {x+\sqrt {1+x}} \left (5+2 \sqrt {1+x}\right )-\frac {7}{4} \operatorname {Subst}\left (\int \frac {1}{\sqrt {-1+x+x^2}} \, dx,x,\sqrt {1+x}\right )+2 \operatorname {Subst}\left (\int \frac {1}{(1-x) \sqrt {-1+x+x^2}} \, dx,x,\sqrt {1+x}\right )\\ &=-\frac {1}{2} \sqrt {x+\sqrt {1+x}} \left (5+2 \sqrt {1+x}\right )-\frac {7}{2} \operatorname {Subst}\left (\int \frac {1}{4-x^2} \, dx,x,\frac {1+2 \sqrt {1+x}}{\sqrt {x+\sqrt {1+x}}}\right )-4 \operatorname {Subst}\left (\int \frac {1}{4-x^2} \, dx,x,\frac {1-3 \sqrt {1+x}}{\sqrt {x+\sqrt {1+x}}}\right )\\ &=-\frac {1}{2} \sqrt {x+\sqrt {1+x}} \left (5+2 \sqrt {1+x}\right )-2 \tanh ^{-1}\left (\frac {1-3 \sqrt {1+x}}{2 \sqrt {x+\sqrt {1+x}}}\right )-\frac {7}{4} \tanh ^{-1}\left (\frac {1+2 \sqrt {1+x}}{2 \sqrt {x+\sqrt {1+x}}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.07, size = 93, normalized size = 1.07 \begin {gather*} \frac {1}{4} \left (-2 \sqrt {x+\sqrt {x+1}} \left (2 \sqrt {x+1}+5\right )-8 \tanh ^{-1}\left (\frac {1-3 \sqrt {x+1}}{2 \sqrt {x+\sqrt {x+1}}}\right )-7 \tanh ^{-1}\left (\frac {2 \sqrt {x+1}+1}{2 \sqrt {x+\sqrt {x+1}}}\right )\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[x + Sqrt[1 + x]]/(1 - Sqrt[1 + x]),x]

[Out]

(-2*Sqrt[x + Sqrt[1 + x]]*(5 + 2*Sqrt[1 + x]) - 8*ArcTanh[(1 - 3*Sqrt[1 + x])/(2*Sqrt[x + Sqrt[1 + x]])] - 7*A
rcTanh[(1 + 2*Sqrt[1 + x])/(2*Sqrt[x + Sqrt[1 + x]])])/4

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.24, size = 87, normalized size = 1.00 \begin {gather*} \frac {1}{2} \left (-5-2 \sqrt {1+x}\right ) \sqrt {x+\sqrt {1+x}}+4 \tanh ^{-1}\left (1-\sqrt {1+x}+\sqrt {x+\sqrt {1+x}}\right )+\frac {7}{4} \log \left (-1-2 \sqrt {1+x}+2 \sqrt {x+\sqrt {1+x}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[Sqrt[x + Sqrt[1 + x]]/(1 - Sqrt[1 + x]),x]

[Out]

((-5 - 2*Sqrt[1 + x])*Sqrt[x + Sqrt[1 + x]])/2 + 4*ArcTanh[1 - Sqrt[1 + x] + Sqrt[x + Sqrt[1 + x]]] + (7*Log[-
1 - 2*Sqrt[1 + x] + 2*Sqrt[x + Sqrt[1 + x]]])/4

________________________________________________________________________________________

fricas [A]  time = 1.24, size = 93, normalized size = 1.07 \begin {gather*} -\frac {1}{2} \, \sqrt {x + \sqrt {x + 1}} {\left (2 \, \sqrt {x + 1} + 5\right )} + \frac {7}{8} \, \log \left (4 \, \sqrt {x + \sqrt {x + 1}} {\left (2 \, \sqrt {x + 1} + 1\right )} - 8 \, x - 8 \, \sqrt {x + 1} - 5\right ) + 2 \, \log \left (\frac {2 \, \sqrt {x + \sqrt {x + 1}} {\left (\sqrt {x + 1} + 1\right )} + 3 \, x + 2 \, \sqrt {x + 1} + 2}{x}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x+(1+x)^(1/2))^(1/2)/(1-(1+x)^(1/2)),x, algorithm="fricas")

[Out]

-1/2*sqrt(x + sqrt(x + 1))*(2*sqrt(x + 1) + 5) + 7/8*log(4*sqrt(x + sqrt(x + 1))*(2*sqrt(x + 1) + 1) - 8*x - 8
*sqrt(x + 1) - 5) + 2*log((2*sqrt(x + sqrt(x + 1))*(sqrt(x + 1) + 1) + 3*x + 2*sqrt(x + 1) + 2)/x)

________________________________________________________________________________________

giac [A]  time = 0.61, size = 87, normalized size = 1.00 \begin {gather*} -\frac {1}{2} \, \sqrt {x + \sqrt {x + 1}} {\left (2 \, \sqrt {x + 1} + 5\right )} + \frac {7}{4} \, \log \left (-2 \, \sqrt {x + \sqrt {x + 1}} + 2 \, \sqrt {x + 1} + 1\right ) + 2 \, \log \left ({\left | \sqrt {x + \sqrt {x + 1}} - \sqrt {x + 1} + 2 \right |}\right ) - 2 \, \log \left ({\left | \sqrt {x + \sqrt {x + 1}} - \sqrt {x + 1} \right |}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x+(1+x)^(1/2))^(1/2)/(1-(1+x)^(1/2)),x, algorithm="giac")

[Out]

-1/2*sqrt(x + sqrt(x + 1))*(2*sqrt(x + 1) + 5) + 7/4*log(-2*sqrt(x + sqrt(x + 1)) + 2*sqrt(x + 1) + 1) + 2*log
(abs(sqrt(x + sqrt(x + 1)) - sqrt(x + 1) + 2)) - 2*log(abs(sqrt(x + sqrt(x + 1)) - sqrt(x + 1)))

________________________________________________________________________________________

maple [A]  time = 0.03, size = 127, normalized size = 1.46

method result size
derivativedivides \(-\frac {\left (2 \sqrt {1+x}+1\right ) \sqrt {x +\sqrt {1+x}}}{2}+\frac {5 \ln \left (\frac {1}{2}+\sqrt {1+x}+\sqrt {x +\sqrt {1+x}}\right )}{4}-2 \sqrt {\left (-1+\sqrt {1+x}\right )^{2}+3 \sqrt {1+x}-2}-3 \ln \left (\frac {1}{2}+\sqrt {1+x}+\sqrt {\left (-1+\sqrt {1+x}\right )^{2}+3 \sqrt {1+x}-2}\right )+2 \arctanh \left (\frac {-1+3 \sqrt {1+x}}{2 \sqrt {\left (-1+\sqrt {1+x}\right )^{2}+3 \sqrt {1+x}-2}}\right )\) \(127\)
default \(-\frac {\left (2 \sqrt {1+x}+1\right ) \sqrt {x +\sqrt {1+x}}}{2}+\frac {5 \ln \left (\frac {1}{2}+\sqrt {1+x}+\sqrt {x +\sqrt {1+x}}\right )}{4}-2 \sqrt {\left (-1+\sqrt {1+x}\right )^{2}+3 \sqrt {1+x}-2}-3 \ln \left (\frac {1}{2}+\sqrt {1+x}+\sqrt {\left (-1+\sqrt {1+x}\right )^{2}+3 \sqrt {1+x}-2}\right )+2 \arctanh \left (\frac {-1+3 \sqrt {1+x}}{2 \sqrt {\left (-1+\sqrt {1+x}\right )^{2}+3 \sqrt {1+x}-2}}\right )\) \(127\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x+(1+x)^(1/2))^(1/2)/(1-(1+x)^(1/2)),x,method=_RETURNVERBOSE)

[Out]

-1/2*(2*(1+x)^(1/2)+1)*(x+(1+x)^(1/2))^(1/2)+5/4*ln(1/2+(1+x)^(1/2)+(x+(1+x)^(1/2))^(1/2))-2*((-1+(1+x)^(1/2))
^2+3*(1+x)^(1/2)-2)^(1/2)-3*ln(1/2+(1+x)^(1/2)+((-1+(1+x)^(1/2))^2+3*(1+x)^(1/2)-2)^(1/2))+2*arctanh(1/2*(-1+3
*(1+x)^(1/2))/((-1+(1+x)^(1/2))^2+3*(1+x)^(1/2)-2)^(1/2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\int \frac {\sqrt {x + \sqrt {x + 1}}}{\sqrt {x + 1} - 1}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x+(1+x)^(1/2))^(1/2)/(1-(1+x)^(1/2)),x, algorithm="maxima")

[Out]

-integrate(sqrt(x + sqrt(x + 1))/(sqrt(x + 1) - 1), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} -\int \frac {\sqrt {x+\sqrt {x+1}}}{\sqrt {x+1}-1} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(x + (x + 1)^(1/2))^(1/2)/((x + 1)^(1/2) - 1),x)

[Out]

-int((x + (x + 1)^(1/2))^(1/2)/((x + 1)^(1/2) - 1), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} - \int \frac {\sqrt {x + \sqrt {x + 1}}}{\sqrt {x + 1} - 1}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x+(1+x)**(1/2))**(1/2)/(1-(1+x)**(1/2)),x)

[Out]

-Integral(sqrt(x + sqrt(x + 1))/(sqrt(x + 1) - 1), x)

________________________________________________________________________________________