3.12.32 \(\int \frac {x}{\sqrt {(1-x) x (1-k^2 x)} (-1+k^2 x^2)} \, dx\)

Optimal. Leaf size=85 \[ \frac {\tan ^{-1}\left (\frac {(k+1) x}{\sqrt {k^2 x^3+\left (-k^2-1\right ) x^2+x}}\right )}{2 k (k+1)}-\frac {\tan ^{-1}\left (\frac {(k-1) x}{\sqrt {k^2 x^3+\left (-k^2-1\right ) x^2+x}}\right )}{2 (k-1) k} \]

________________________________________________________________________________________

Rubi [C]  time = 1.69, antiderivative size = 203, normalized size of antiderivative = 2.39, number of steps used = 13, number of rules used = 7, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.219, Rules used = {6718, 6725, 175, 115, 168, 538, 537} \begin {gather*} \frac {\sqrt {1-x} \sqrt {x} \sqrt {\frac {k^2 (1-x)}{1-k^2}+1} \Pi \left (-\frac {k}{1-k};\sin ^{-1}\left (\sqrt {1-x}\right )|-\frac {k^2}{1-k^2}\right )}{(1-k) k \sqrt {(1-x) x \left (1-k^2 x\right )}}-\frac {\sqrt {1-x} \sqrt {x} \sqrt {\frac {k^2 (1-x)}{1-k^2}+1} \Pi \left (\frac {k}{k+1};\sin ^{-1}\left (\sqrt {1-x}\right )|-\frac {k^2}{1-k^2}\right )}{k (k+1) \sqrt {(1-x) x \left (1-k^2 x\right )}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x/(Sqrt[(1 - x)*x*(1 - k^2*x)]*(-1 + k^2*x^2)),x]

[Out]

(Sqrt[1 + (k^2*(1 - x))/(1 - k^2)]*Sqrt[1 - x]*Sqrt[x]*EllipticPi[-(k/(1 - k)), ArcSin[Sqrt[1 - x]], -(k^2/(1
- k^2))])/((1 - k)*k*Sqrt[(1 - x)*x*(1 - k^2*x)]) - (Sqrt[1 + (k^2*(1 - x))/(1 - k^2)]*Sqrt[1 - x]*Sqrt[x]*Ell
ipticPi[k/(1 + k), ArcSin[Sqrt[1 - x]], -(k^2/(1 - k^2))])/(k*(1 + k)*Sqrt[(1 - x)*x*(1 - k^2*x)])

Rule 115

Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-(b/d), 2]*E
llipticF[ArcSin[Sqrt[b*x]/(Sqrt[c]*Rt[-(b/d), 2])], (c*f)/(d*e)])/(b*Sqrt[e]), x] /; FreeQ[{b, c, d, e, f}, x]
 && GtQ[c, 0] && GtQ[e, 0] && (GtQ[-(b/d), 0] || LtQ[-(b/f), 0])

Rule 168

Int[1/(((a_.) + (b_.)*(x_))*Sqrt[(c_.) + (d_.)*(x_)]*Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g_.) + (h_.)*(x_)]), x_Sym
bol] :> Dist[-2, Subst[Int[1/(Simp[b*c - a*d - b*x^2, x]*Sqrt[Simp[(d*e - c*f)/d + (f*x^2)/d, x]]*Sqrt[Simp[(d
*g - c*h)/d + (h*x^2)/d, x]]), x], x, Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && GtQ[(d*e - c
*f)/d, 0]

Rule 175

Int[Sqrt[(c_.) + (d_.)*(x_)]/(((a_.) + (b_.)*(x_))*Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g_.) + (h_.)*(x_)]), x_Symbo
l] :> Dist[d/b, Int[1/(Sqrt[c + d*x]*Sqrt[e + f*x]*Sqrt[g + h*x]), x], x] + Dist[(b*c - a*d)/b, Int[1/((a + b*
x)*Sqrt[c + d*x]*Sqrt[e + f*x]*Sqrt[g + h*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 537

Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[(1*Ellipt
icPi[(b*c)/(a*d), ArcSin[Rt[-(d/c), 2]*x], (c*f)/(d*e)])/(a*Sqrt[c]*Sqrt[e]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b,
 c, d, e, f}, x] &&  !GtQ[d/c, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !( !GtQ[f/e, 0] && SimplerSqrtQ[-(f/e), -(d/c)
])

Rule 538

Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 +
(d*x^2)/c]/Sqrt[c + d*x^2], Int[1/((a + b*x^2)*Sqrt[1 + (d*x^2)/c]*Sqrt[e + f*x^2]), x], x] /; FreeQ[{a, b, c,
 d, e, f}, x] &&  !GtQ[c, 0]

Rule 6718

Int[(u_.)*((a_.)*(v_)^(m_.)*(w_)^(n_.)*(z_)^(q_.))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a*v^m*w^n*z^q)^FracP
art[p])/(v^(m*FracPart[p])*w^(n*FracPart[p])*z^(q*FracPart[p])), Int[u*v^(m*p)*w^(n*p)*z^(p*q), x], x] /; Free
Q[{a, m, n, p, q}, x] &&  !IntegerQ[p] &&  !FreeQ[v, x] &&  !FreeQ[w, x] &&  !FreeQ[z, x]

Rule 6725

Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
 /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {x}{\sqrt {(1-x) x \left (1-k^2 x\right )} \left (-1+k^2 x^2\right )} \, dx &=\frac {\left (\sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \int \frac {\sqrt {x}}{\sqrt {1-x} \sqrt {1-k^2 x} \left (-1+k^2 x^2\right )} \, dx}{\sqrt {(1-x) x \left (1-k^2 x\right )}}\\ &=\frac {\left (\sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \int \left (-\frac {\sqrt {x}}{2 \sqrt {1-x} (1-k x) \sqrt {1-k^2 x}}-\frac {\sqrt {x}}{2 \sqrt {1-x} (1+k x) \sqrt {1-k^2 x}}\right ) \, dx}{\sqrt {(1-x) x \left (1-k^2 x\right )}}\\ &=-\frac {\left (\sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \int \frac {\sqrt {x}}{\sqrt {1-x} (1-k x) \sqrt {1-k^2 x}} \, dx}{2 \sqrt {(1-x) x \left (1-k^2 x\right )}}-\frac {\left (\sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \int \frac {\sqrt {x}}{\sqrt {1-x} (1+k x) \sqrt {1-k^2 x}} \, dx}{2 \sqrt {(1-x) x \left (1-k^2 x\right )}}\\ &=-\frac {\left (\sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \int \frac {1}{\sqrt {1-x} \sqrt {x} (1-k x) \sqrt {1-k^2 x}} \, dx}{2 k \sqrt {(1-x) x \left (1-k^2 x\right )}}+\frac {\left (\sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \int \frac {1}{\sqrt {1-x} \sqrt {x} (1+k x) \sqrt {1-k^2 x}} \, dx}{2 k \sqrt {(1-x) x \left (1-k^2 x\right )}}\\ &=-\frac {\left (\sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \left (1+k-k x^2\right ) \sqrt {1-k^2+k^2 x^2}} \, dx,x,\sqrt {1-x}\right )}{k \sqrt {(1-x) x \left (1-k^2 x\right )}}+\frac {\left (\sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \left (1-k+k x^2\right ) \sqrt {1-k^2+k^2 x^2}} \, dx,x,\sqrt {1-x}\right )}{k \sqrt {(1-x) x \left (1-k^2 x\right )}}\\ &=-\frac {\left (\sqrt {1+\frac {k^2 (-1+x)}{-1+k^2}} \sqrt {1-x} \sqrt {x}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \left (1+k-k x^2\right ) \sqrt {1+\frac {k^2 x^2}{1-k^2}}} \, dx,x,\sqrt {1-x}\right )}{k \sqrt {(1-x) x \left (1-k^2 x\right )}}+\frac {\left (\sqrt {1+\frac {k^2 (-1+x)}{-1+k^2}} \sqrt {1-x} \sqrt {x}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \left (1-k+k x^2\right ) \sqrt {1+\frac {k^2 x^2}{1-k^2}}} \, dx,x,\sqrt {1-x}\right )}{k \sqrt {(1-x) x \left (1-k^2 x\right )}}\\ &=\frac {\sqrt {1+\frac {k^2 (1-x)}{1-k^2}} \sqrt {1-x} \sqrt {x} \Pi \left (-\frac {k}{1-k};\sin ^{-1}\left (\sqrt {1-x}\right )|-\frac {k^2}{1-k^2}\right )}{(1-k) k \sqrt {(1-x) x \left (1-k^2 x\right )}}-\frac {\sqrt {1+\frac {k^2 (1-x)}{1-k^2}} \sqrt {1-x} \sqrt {x} \Pi \left (\frac {k}{1+k};\sin ^{-1}\left (\sqrt {1-x}\right )|-\frac {k^2}{1-k^2}\right )}{k (1+k) \sqrt {(1-x) x \left (1-k^2 x\right )}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 1.39, size = 154, normalized size = 1.81 \begin {gather*} \frac {i \sqrt {x-1} x \sqrt {\frac {1-\frac {1}{k^2}}{x-1}+1} \left (2 k F\left (i \sinh ^{-1}\left (\frac {1}{\sqrt {x-1}}\right )|1-\frac {1}{k^2}\right )-(k-1) \Pi \left (1+\frac {1}{k};i \sinh ^{-1}\left (\frac {1}{\sqrt {x-1}}\right )|1-\frac {1}{k^2}\right )-(k+1) \Pi \left (\frac {k-1}{k};i \sinh ^{-1}\left (\frac {1}{\sqrt {x-1}}\right )|1-\frac {1}{k^2}\right )\right )}{k \left (k^2-1\right ) \sqrt {\frac {1}{x-1}+1} \sqrt {(x-1) x \left (k^2 x-1\right )}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x/(Sqrt[(1 - x)*x*(1 - k^2*x)]*(-1 + k^2*x^2)),x]

[Out]

(I*Sqrt[1 + (1 - k^(-2))/(-1 + x)]*Sqrt[-1 + x]*x*(2*k*EllipticF[I*ArcSinh[1/Sqrt[-1 + x]], 1 - k^(-2)] - (-1
+ k)*EllipticPi[1 + k^(-1), I*ArcSinh[1/Sqrt[-1 + x]], 1 - k^(-2)] - (1 + k)*EllipticPi[(-1 + k)/k, I*ArcSinh[
1/Sqrt[-1 + x]], 1 - k^(-2)]))/(k*(-1 + k^2)*Sqrt[1 + (-1 + x)^(-1)]*Sqrt[(-1 + x)*x*(-1 + k^2*x)])

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.19, size = 85, normalized size = 1.00 \begin {gather*} -\frac {\tan ^{-1}\left (\frac {(-1+k) x}{\sqrt {x+\left (-1-k^2\right ) x^2+k^2 x^3}}\right )}{2 (-1+k) k}+\frac {\tan ^{-1}\left (\frac {(1+k) x}{\sqrt {x+\left (-1-k^2\right ) x^2+k^2 x^3}}\right )}{2 k (1+k)} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[x/(Sqrt[(1 - x)*x*(1 - k^2*x)]*(-1 + k^2*x^2)),x]

[Out]

-1/2*ArcTan[((-1 + k)*x)/Sqrt[x + (-1 - k^2)*x^2 + k^2*x^3]]/((-1 + k)*k) + ArcTan[((1 + k)*x)/Sqrt[x + (-1 -
k^2)*x^2 + k^2*x^3]]/(2*k*(1 + k))

________________________________________________________________________________________

fricas [B]  time = 0.50, size = 177, normalized size = 2.08 \begin {gather*} -\frac {{\left (k - 1\right )} \arctan \left (\frac {\sqrt {k^{2} x^{3} - {\left (k^{2} + 1\right )} x^{2} + x} {\left (k^{2} x^{2} - 2 \, {\left (k^{2} + k + 1\right )} x + 1\right )}}{2 \, {\left ({\left (k^{3} + k^{2}\right )} x^{3} - {\left (k^{3} + k^{2} + k + 1\right )} x^{2} + {\left (k + 1\right )} x\right )}}\right ) - {\left (k + 1\right )} \arctan \left (\frac {\sqrt {k^{2} x^{3} - {\left (k^{2} + 1\right )} x^{2} + x} {\left (k^{2} x^{2} - 2 \, {\left (k^{2} - k + 1\right )} x + 1\right )}}{2 \, {\left ({\left (k^{3} - k^{2}\right )} x^{3} - {\left (k^{3} - k^{2} + k - 1\right )} x^{2} + {\left (k - 1\right )} x\right )}}\right )}{4 \, {\left (k^{3} - k\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/((1-x)*x*(-k^2*x+1))^(1/2)/(k^2*x^2-1),x, algorithm="fricas")

[Out]

-1/4*((k - 1)*arctan(1/2*sqrt(k^2*x^3 - (k^2 + 1)*x^2 + x)*(k^2*x^2 - 2*(k^2 + k + 1)*x + 1)/((k^3 + k^2)*x^3
- (k^3 + k^2 + k + 1)*x^2 + (k + 1)*x)) - (k + 1)*arctan(1/2*sqrt(k^2*x^3 - (k^2 + 1)*x^2 + x)*(k^2*x^2 - 2*(k
^2 - k + 1)*x + 1)/((k^3 - k^2)*x^3 - (k^3 - k^2 + k - 1)*x^2 + (k - 1)*x)))/(k^3 - k)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x}{{\left (k^{2} x^{2} - 1\right )} \sqrt {{\left (k^{2} x - 1\right )} {\left (x - 1\right )} x}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/((1-x)*x*(-k^2*x+1))^(1/2)/(k^2*x^2-1),x, algorithm="giac")

[Out]

integrate(x/((k^2*x^2 - 1)*sqrt((k^2*x - 1)*(x - 1)*x)), x)

________________________________________________________________________________________

maple [C]  time = 0.09, size = 232, normalized size = 2.73

method result size
default \(-\frac {\sqrt {-\left (x -\frac {1}{k^{2}}\right ) k^{2}}\, \sqrt {\frac {-1+x}{\frac {1}{k^{2}}-1}}\, \sqrt {k^{2} x}\, \EllipticPi \left (\sqrt {-\left (x -\frac {1}{k^{2}}\right ) k^{2}}, \frac {1}{k^{2} \left (\frac {1}{k^{2}}+\frac {1}{k}\right )}, \sqrt {\frac {1}{k^{2} \left (\frac {1}{k^{2}}-1\right )}}\right )}{k^{4} \sqrt {k^{2} x^{3}-k^{2} x^{2}-x^{2}+x}\, \left (\frac {1}{k^{2}}+\frac {1}{k}\right )}-\frac {\sqrt {-\left (x -\frac {1}{k^{2}}\right ) k^{2}}\, \sqrt {\frac {-1+x}{\frac {1}{k^{2}}-1}}\, \sqrt {k^{2} x}\, \EllipticPi \left (\sqrt {-\left (x -\frac {1}{k^{2}}\right ) k^{2}}, \frac {1}{k^{2} \left (\frac {1}{k^{2}}-\frac {1}{k}\right )}, \sqrt {\frac {1}{k^{2} \left (\frac {1}{k^{2}}-1\right )}}\right )}{k^{4} \sqrt {k^{2} x^{3}-k^{2} x^{2}-x^{2}+x}\, \left (\frac {1}{k^{2}}-\frac {1}{k}\right )}\) \(232\)
elliptic \(-\frac {\sqrt {-k^{2} x +1}\, \sqrt {-\frac {1}{\frac {1}{k^{2}}-1}+\frac {x}{\frac {1}{k^{2}}-1}}\, \sqrt {k^{2} x}\, \EllipticPi \left (\sqrt {-\left (x -\frac {1}{k^{2}}\right ) k^{2}}, \frac {1}{k^{2} \left (\frac {1}{k^{2}}+\frac {1}{k}\right )}, \sqrt {\frac {1}{k^{2} \left (\frac {1}{k^{2}}-1\right )}}\right )}{k^{4} \sqrt {k^{2} x^{3}-k^{2} x^{2}-x^{2}+x}\, \left (\frac {1}{k^{2}}+\frac {1}{k}\right )}-\frac {\sqrt {-k^{2} x +1}\, \sqrt {-\frac {1}{\frac {1}{k^{2}}-1}+\frac {x}{\frac {1}{k^{2}}-1}}\, \sqrt {k^{2} x}\, \EllipticPi \left (\sqrt {-\left (x -\frac {1}{k^{2}}\right ) k^{2}}, \frac {1}{k^{2} \left (\frac {1}{k^{2}}-\frac {1}{k}\right )}, \sqrt {\frac {1}{k^{2} \left (\frac {1}{k^{2}}-1\right )}}\right )}{k^{4} \sqrt {k^{2} x^{3}-k^{2} x^{2}-x^{2}+x}\, \left (\frac {1}{k^{2}}-\frac {1}{k}\right )}\) \(240\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/((1-x)*x*(-k^2*x+1))^(1/2)/(k^2*x^2-1),x,method=_RETURNVERBOSE)

[Out]

-1/k^4*(-(x-1/k^2)*k^2)^(1/2)*((-1+x)/(1/k^2-1))^(1/2)*(k^2*x)^(1/2)/(k^2*x^3-k^2*x^2-x^2+x)^(1/2)/(1/k^2+1/k)
*EllipticPi((-(x-1/k^2)*k^2)^(1/2),1/k^2/(1/k^2+1/k),(1/k^2/(1/k^2-1))^(1/2))-1/k^4*(-(x-1/k^2)*k^2)^(1/2)*((-
1+x)/(1/k^2-1))^(1/2)*(k^2*x)^(1/2)/(k^2*x^3-k^2*x^2-x^2+x)^(1/2)/(1/k^2-1/k)*EllipticPi((-(x-1/k^2)*k^2)^(1/2
),1/k^2/(1/k^2-1/k),(1/k^2/(1/k^2-1))^(1/2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x}{{\left (k^{2} x^{2} - 1\right )} \sqrt {{\left (k^{2} x - 1\right )} {\left (x - 1\right )} x}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/((1-x)*x*(-k^2*x+1))^(1/2)/(k^2*x^2-1),x, algorithm="maxima")

[Out]

integrate(x/((k^2*x^2 - 1)*sqrt((k^2*x - 1)*(x - 1)*x)), x)

________________________________________________________________________________________

mupad [F(-1)]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \text {Hanged} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/((k^2*x^2 - 1)*(x*(k^2*x - 1)*(x - 1))^(1/2)),x)

[Out]

\text{Hanged}

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x}{\sqrt {x \left (x - 1\right ) \left (k^{2} x - 1\right )} \left (k x - 1\right ) \left (k x + 1\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/((1-x)*x*(-k**2*x+1))**(1/2)/(k**2*x**2-1),x)

[Out]

Integral(x/(sqrt(x*(x - 1)*(k**2*x - 1))*(k*x - 1)*(k*x + 1)), x)

________________________________________________________________________________________