3.86 \(\int e^{c+d x^2} x^3 \text {erf}(a+b x) \, dx\)

Optimal. Leaf size=342 \[ \frac {b e^{\frac {a^2 d}{b^2-d}+c} \text {erf}\left (\frac {a b+x \left (b^2-d\right )}{\sqrt {b^2-d}}\right )}{2 d^2 \sqrt {b^2-d}}-\frac {b e^{\frac {a^2 d}{b^2-d}+c} \text {erf}\left (\frac {a b+x \left (b^2-d\right )}{\sqrt {b^2-d}}\right )}{4 d \left (b^2-d\right )^{3/2}}-\frac {a b^2 e^{-a^2-2 a b x-x^2 \left (b^2-d\right )+c}}{2 \sqrt {\pi } d \left (b^2-d\right )^2}+\frac {b x e^{-a^2-2 a b x-x^2 \left (b^2-d\right )+c}}{2 \sqrt {\pi } d \left (b^2-d\right )}-\frac {a^2 b^3 e^{\frac {a^2 d}{b^2-d}+c} \text {erf}\left (\frac {a b+x \left (b^2-d\right )}{\sqrt {b^2-d}}\right )}{2 d \left (b^2-d\right )^{5/2}}-\frac {e^{c+d x^2} \text {erf}(a+b x)}{2 d^2}+\frac {x^2 e^{c+d x^2} \text {erf}(a+b x)}{2 d} \]

[Out]

-1/2*exp(d*x^2+c)*erf(b*x+a)/d^2+1/2*exp(d*x^2+c)*x^2*erf(b*x+a)/d-1/2*a^2*b^3*exp(c+a^2*d/(b^2-d))*erf((a*b+(
b^2-d)*x)/(b^2-d)^(1/2))/(b^2-d)^(5/2)/d-1/4*b*exp(c+a^2*d/(b^2-d))*erf((a*b+(b^2-d)*x)/(b^2-d)^(1/2))/(b^2-d)
^(3/2)/d+1/2*b*exp(c+a^2*d/(b^2-d))*erf((a*b+(b^2-d)*x)/(b^2-d)^(1/2))/d^2/(b^2-d)^(1/2)-1/2*a*b^2*exp(-a^2+c-
2*a*b*x-(b^2-d)*x^2)/(b^2-d)^2/d/Pi^(1/2)+1/2*b*exp(-a^2+c-2*a*b*x-(b^2-d)*x^2)*x/(b^2-d)/d/Pi^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.51, antiderivative size = 342, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 6, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.316, Rules used = {6385, 6382, 2234, 2205, 2241, 2240} \[ \frac {b e^{\frac {a^2 d}{b^2-d}+c} \text {Erf}\left (\frac {a b+x \left (b^2-d\right )}{\sqrt {b^2-d}}\right )}{2 d^2 \sqrt {b^2-d}}-\frac {a^2 b^3 e^{\frac {a^2 d}{b^2-d}+c} \text {Erf}\left (\frac {a b+x \left (b^2-d\right )}{\sqrt {b^2-d}}\right )}{2 d \left (b^2-d\right )^{5/2}}-\frac {b e^{\frac {a^2 d}{b^2-d}+c} \text {Erf}\left (\frac {a b+x \left (b^2-d\right )}{\sqrt {b^2-d}}\right )}{4 d \left (b^2-d\right )^{3/2}}-\frac {a b^2 e^{-a^2-2 a b x-x^2 \left (b^2-d\right )+c}}{2 \sqrt {\pi } d \left (b^2-d\right )^2}+\frac {b x e^{-a^2-2 a b x-x^2 \left (b^2-d\right )+c}}{2 \sqrt {\pi } d \left (b^2-d\right )}-\frac {e^{c+d x^2} \text {Erf}(a+b x)}{2 d^2}+\frac {x^2 e^{c+d x^2} \text {Erf}(a+b x)}{2 d} \]

Antiderivative was successfully verified.

[In]

Int[E^(c + d*x^2)*x^3*Erf[a + b*x],x]

[Out]

-(a*b^2*E^(-a^2 + c - 2*a*b*x - (b^2 - d)*x^2))/(2*(b^2 - d)^2*d*Sqrt[Pi]) + (b*E^(-a^2 + c - 2*a*b*x - (b^2 -
 d)*x^2)*x)/(2*(b^2 - d)*d*Sqrt[Pi]) - (E^(c + d*x^2)*Erf[a + b*x])/(2*d^2) + (E^(c + d*x^2)*x^2*Erf[a + b*x])
/(2*d) + (b*E^(c + (a^2*d)/(b^2 - d))*Erf[(a*b + (b^2 - d)*x)/Sqrt[b^2 - d]])/(2*Sqrt[b^2 - d]*d^2) - (a^2*b^3
*E^(c + (a^2*d)/(b^2 - d))*Erf[(a*b + (b^2 - d)*x)/Sqrt[b^2 - d]])/(2*(b^2 - d)^(5/2)*d) - (b*E^(c + (a^2*d)/(
b^2 - d))*Erf[(a*b + (b^2 - d)*x)/Sqrt[b^2 - d]])/(4*(b^2 - d)^(3/2)*d)

Rule 2205

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erf[(c + d*x)*Rt[-(b*Log[F]),
 2]])/(2*d*Rt[-(b*Log[F]), 2]), x] /; FreeQ[{F, a, b, c, d}, x] && NegQ[b]

Rule 2234

Int[(F_)^((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[F^(a - b^2/(4*c)), Int[F^((b + 2*c*x)^2/(4*c))
, x], x] /; FreeQ[{F, a, b, c}, x]

Rule 2240

Int[(F_)^((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)*((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[(e*F^(a + b*x + c*x^2))/(
2*c*Log[F]), x] - Dist[(b*e - 2*c*d)/(2*c), Int[F^(a + b*x + c*x^2), x], x] /; FreeQ[{F, a, b, c, d, e}, x] &&
 NeQ[b*e - 2*c*d, 0]

Rule 2241

Int[(F_)^((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)*((d_.) + (e_.)*(x_))^(m_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)
*F^(a + b*x + c*x^2))/(2*c*Log[F]), x] + (-Dist[(b*e - 2*c*d)/(2*c), Int[(d + e*x)^(m - 1)*F^(a + b*x + c*x^2)
, x], x] - Dist[((m - 1)*e^2)/(2*c*Log[F]), Int[(d + e*x)^(m - 2)*F^(a + b*x + c*x^2), x], x]) /; FreeQ[{F, a,
 b, c, d, e}, x] && NeQ[b*e - 2*c*d, 0] && GtQ[m, 1]

Rule 6382

Int[E^((c_.) + (d_.)*(x_)^2)*Erf[(a_.) + (b_.)*(x_)]*(x_), x_Symbol] :> Simp[(E^(c + d*x^2)*Erf[a + b*x])/(2*d
), x] - Dist[b/(d*Sqrt[Pi]), Int[E^(-a^2 + c - 2*a*b*x - (b^2 - d)*x^2), x], x] /; FreeQ[{a, b, c, d}, x]

Rule 6385

Int[E^((c_.) + (d_.)*(x_)^2)*Erf[(a_.) + (b_.)*(x_)]*(x_)^(m_), x_Symbol] :> Simp[(x^(m - 1)*E^(c + d*x^2)*Erf
[a + b*x])/(2*d), x] + (-Dist[(m - 1)/(2*d), Int[x^(m - 2)*E^(c + d*x^2)*Erf[a + b*x], x], x] - Dist[b/(d*Sqrt
[Pi]), Int[x^(m - 1)*E^(-a^2 + c - 2*a*b*x - (b^2 - d)*x^2), x], x]) /; FreeQ[{a, b, c, d}, x] && IGtQ[m, 1]

Rubi steps

\begin {align*} \int e^{c+d x^2} x^3 \text {erf}(a+b x) \, dx &=\frac {e^{c+d x^2} x^2 \text {erf}(a+b x)}{2 d}-\frac {\int e^{c+d x^2} x \text {erf}(a+b x) \, dx}{d}-\frac {b \int e^{-a^2+c-2 a b x+\left (-b^2+d\right ) x^2} x^2 \, dx}{d \sqrt {\pi }}\\ &=\frac {b e^{-a^2+c-2 a b x-\left (b^2-d\right ) x^2} x}{2 \left (b^2-d\right ) d \sqrt {\pi }}-\frac {e^{c+d x^2} \text {erf}(a+b x)}{2 d^2}+\frac {e^{c+d x^2} x^2 \text {erf}(a+b x)}{2 d}+\frac {b \int e^{-a^2+c-2 a b x-\left (b^2-d\right ) x^2} \, dx}{d^2 \sqrt {\pi }}-\frac {b \int e^{-a^2+c-2 a b x+\left (-b^2+d\right ) x^2} \, dx}{2 \left (b^2-d\right ) d \sqrt {\pi }}+\frac {\left (a b^2\right ) \int e^{-a^2+c-2 a b x+\left (-b^2+d\right ) x^2} x \, dx}{\left (b^2-d\right ) d \sqrt {\pi }}\\ &=-\frac {a b^2 e^{-a^2+c-2 a b x-\left (b^2-d\right ) x^2}}{2 \left (b^2-d\right )^2 d \sqrt {\pi }}+\frac {b e^{-a^2+c-2 a b x-\left (b^2-d\right ) x^2} x}{2 \left (b^2-d\right ) d \sqrt {\pi }}-\frac {e^{c+d x^2} \text {erf}(a+b x)}{2 d^2}+\frac {e^{c+d x^2} x^2 \text {erf}(a+b x)}{2 d}-\frac {\left (a^2 b^3\right ) \int e^{-a^2+c-2 a b x+\left (-b^2+d\right ) x^2} \, dx}{\left (b^2-d\right )^2 d \sqrt {\pi }}+\frac {\left (b e^{\frac {b^2 c+a^2 d-c d}{b^2-d}}\right ) \int \exp \left (\frac {\left (-2 a b+2 \left (-b^2+d\right ) x\right )^2}{4 \left (-b^2+d\right )}\right ) \, dx}{d^2 \sqrt {\pi }}-\frac {\left (b e^{\frac {b^2 c+a^2 d-c d}{b^2-d}}\right ) \int \exp \left (\frac {\left (-2 a b+2 \left (-b^2+d\right ) x\right )^2}{4 \left (-b^2+d\right )}\right ) \, dx}{2 \left (b^2-d\right ) d \sqrt {\pi }}\\ &=-\frac {a b^2 e^{-a^2+c-2 a b x-\left (b^2-d\right ) x^2}}{2 \left (b^2-d\right )^2 d \sqrt {\pi }}+\frac {b e^{-a^2+c-2 a b x-\left (b^2-d\right ) x^2} x}{2 \left (b^2-d\right ) d \sqrt {\pi }}-\frac {e^{c+d x^2} \text {erf}(a+b x)}{2 d^2}+\frac {e^{c+d x^2} x^2 \text {erf}(a+b x)}{2 d}+\frac {b e^{\frac {b^2 c+a^2 d-c d}{b^2-d}} \text {erf}\left (\frac {a b+\left (b^2-d\right ) x}{\sqrt {b^2-d}}\right )}{2 \sqrt {b^2-d} d^2}-\frac {b e^{\frac {b^2 c+a^2 d-c d}{b^2-d}} \text {erf}\left (\frac {a b+\left (b^2-d\right ) x}{\sqrt {b^2-d}}\right )}{4 \left (b^2-d\right )^{3/2} d}-\frac {\left (a^2 b^3 e^{\frac {b^2 c+a^2 d-c d}{b^2-d}}\right ) \int \exp \left (\frac {\left (-2 a b+2 \left (-b^2+d\right ) x\right )^2}{4 \left (-b^2+d\right )}\right ) \, dx}{\left (b^2-d\right )^2 d \sqrt {\pi }}\\ &=-\frac {a b^2 e^{-a^2+c-2 a b x-\left (b^2-d\right ) x^2}}{2 \left (b^2-d\right )^2 d \sqrt {\pi }}+\frac {b e^{-a^2+c-2 a b x-\left (b^2-d\right ) x^2} x}{2 \left (b^2-d\right ) d \sqrt {\pi }}-\frac {e^{c+d x^2} \text {erf}(a+b x)}{2 d^2}+\frac {e^{c+d x^2} x^2 \text {erf}(a+b x)}{2 d}+\frac {b e^{\frac {b^2 c+a^2 d-c d}{b^2-d}} \text {erf}\left (\frac {a b+\left (b^2-d\right ) x}{\sqrt {b^2-d}}\right )}{2 \sqrt {b^2-d} d^2}-\frac {a^2 b^3 e^{\frac {b^2 c+a^2 d-c d}{b^2-d}} \text {erf}\left (\frac {a b+\left (b^2-d\right ) x}{\sqrt {b^2-d}}\right )}{2 \left (b^2-d\right )^{5/2} d}-\frac {b e^{\frac {b^2 c+a^2 d-c d}{b^2-d}} \text {erf}\left (\frac {a b+\left (b^2-d\right ) x}{\sqrt {b^2-d}}\right )}{4 \left (b^2-d\right )^{3/2} d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 5.45, size = 240, normalized size = 0.70 \[ \frac {e^c \left (-\frac {b d e^{-a^2-2 a b x+x^2 \left (d-b^2\right )} \left (\sqrt {\pi } \sqrt {b^2-d} \left (\left (2 a^2+1\right ) b^2-d\right ) e^{\frac {\left (a b+x \left (b^2-d\right )\right )^2}{b^2-d}} \text {erf}\left (\frac {a b+x \left (b^2-d\right )}{\sqrt {b^2-d}}\right )+2 \left (b^2-d\right ) \left (a b+x \left (d-b^2\right )\right )\right )}{\sqrt {\pi } \left (b^2-d\right )^3}+\frac {2 b e^{\frac {a^2 d}{b^2-d}} \text {erfi}\left (\frac {x \left (d-b^2\right )-a b}{\sqrt {d-b^2}}\right )}{\sqrt {d-b^2}}+2 e^{d x^2} \left (d x^2-1\right ) \text {erf}(a+b x)\right )}{4 d^2} \]

Antiderivative was successfully verified.

[In]

Integrate[E^(c + d*x^2)*x^3*Erf[a + b*x],x]

[Out]

(E^c*(2*E^(d*x^2)*(-1 + d*x^2)*Erf[a + b*x] - (b*d*E^(-a^2 - 2*a*b*x + (-b^2 + d)*x^2)*(2*(b^2 - d)*(a*b + (-b
^2 + d)*x) + Sqrt[b^2 - d]*((1 + 2*a^2)*b^2 - d)*E^((a*b + (b^2 - d)*x)^2/(b^2 - d))*Sqrt[Pi]*Erf[(a*b + (b^2
- d)*x)/Sqrt[b^2 - d]]))/((b^2 - d)^3*Sqrt[Pi]) + (2*b*E^((a^2*d)/(b^2 - d))*Erfi[(-(a*b) + (-b^2 + d)*x)/Sqrt
[-b^2 + d]])/Sqrt[-b^2 + d]))/(4*d^2)

________________________________________________________________________________________

fricas [A]  time = 0.68, size = 267, normalized size = 0.78 \[ \frac {\pi {\left (2 \, b^{5} - {\left (2 \, a^{2} + 5\right )} b^{3} d + 3 \, b d^{2}\right )} \sqrt {b^{2} - d} \operatorname {erf}\left (\frac {a b + {\left (b^{2} - d\right )} x}{\sqrt {b^{2} - d}}\right ) e^{\left (\frac {b^{2} c + {\left (a^{2} - c\right )} d}{b^{2} - d}\right )} + 2 \, {\left (\pi {\left (b^{6} d - 3 \, b^{4} d^{2} + 3 \, b^{2} d^{3} - d^{4}\right )} x^{2} - \pi {\left (b^{6} - 3 \, b^{4} d + 3 \, b^{2} d^{2} - d^{3}\right )}\right )} \operatorname {erf}\left (b x + a\right ) e^{\left (d x^{2} + c\right )} - 2 \, \sqrt {\pi } {\left (a b^{4} d - a b^{2} d^{2} - {\left (b^{5} d - 2 \, b^{3} d^{2} + b d^{3}\right )} x\right )} e^{\left (-b^{2} x^{2} - 2 \, a b x + d x^{2} - a^{2} + c\right )}}{4 \, \pi {\left (b^{6} d^{2} - 3 \, b^{4} d^{3} + 3 \, b^{2} d^{4} - d^{5}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(d*x^2+c)*x^3*erf(b*x+a),x, algorithm="fricas")

[Out]

1/4*(pi*(2*b^5 - (2*a^2 + 5)*b^3*d + 3*b*d^2)*sqrt(b^2 - d)*erf((a*b + (b^2 - d)*x)/sqrt(b^2 - d))*e^((b^2*c +
 (a^2 - c)*d)/(b^2 - d)) + 2*(pi*(b^6*d - 3*b^4*d^2 + 3*b^2*d^3 - d^4)*x^2 - pi*(b^6 - 3*b^4*d + 3*b^2*d^2 - d
^3))*erf(b*x + a)*e^(d*x^2 + c) - 2*sqrt(pi)*(a*b^4*d - a*b^2*d^2 - (b^5*d - 2*b^3*d^2 + b*d^3)*x)*e^(-b^2*x^2
 - 2*a*b*x + d*x^2 - a^2 + c))/(pi*(b^6*d^2 - 3*b^4*d^3 + 3*b^2*d^4 - d^5))

________________________________________________________________________________________

giac [A]  time = 0.27, size = 271, normalized size = 0.79 \[ \frac {{\left (d x^{2} - 1\right )} \operatorname {erf}\left (b x + a\right ) e^{\left (d x^{2} + c\right )}}{2 \, d^{2}} - \frac {\frac {2 \, \sqrt {\pi } b \operatorname {erf}\left (-\sqrt {b^{2} - d} {\left (\frac {a b}{b^{2} - d} + x\right )}\right ) e^{\left (\frac {b^{2} c + a^{2} d - c d}{b^{2} - d}\right )}}{\sqrt {b^{2} - d}} - \frac {{\left (\frac {\sqrt {\pi } {\left (2 \, a^{2} b^{2} + b^{2} - d\right )} \operatorname {erf}\left (-\sqrt {b^{2} - d} {\left (\frac {a b}{b^{2} - d} + x\right )}\right ) e^{\left (\frac {b^{2} c + a^{2} d - c d}{b^{2} - d}\right )}}{\sqrt {b^{2} - d}} + 2 \, {\left ({\left (\frac {a b}{b^{2} - d} + x\right )} b^{2} - 2 \, a b - {\left (\frac {a b}{b^{2} - d} + x\right )} d\right )} e^{\left (-b^{2} x^{2} - 2 \, a b x + d x^{2} - a^{2} + c\right )}\right )} b d}{b^{4} - 2 \, b^{2} d + d^{2}}}{4 \, \sqrt {\pi } d^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(d*x^2+c)*x^3*erf(b*x+a),x, algorithm="giac")

[Out]

1/2*(d*x^2 - 1)*erf(b*x + a)*e^(d*x^2 + c)/d^2 - 1/4*(2*sqrt(pi)*b*erf(-sqrt(b^2 - d)*(a*b/(b^2 - d) + x))*e^(
(b^2*c + a^2*d - c*d)/(b^2 - d))/sqrt(b^2 - d) - (sqrt(pi)*(2*a^2*b^2 + b^2 - d)*erf(-sqrt(b^2 - d)*(a*b/(b^2
- d) + x))*e^((b^2*c + a^2*d - c*d)/(b^2 - d))/sqrt(b^2 - d) + 2*((a*b/(b^2 - d) + x)*b^2 - 2*a*b - (a*b/(b^2
- d) + x)*d)*e^(-b^2*x^2 - 2*a*b*x + d*x^2 - a^2 + c))*b*d/(b^4 - 2*b^2*d + d^2))/(sqrt(pi)*d^2)

________________________________________________________________________________________

maple [F]  time = 0.25, size = 0, normalized size = 0.00 \[ \int {\mathrm e}^{d \,x^{2}+c} x^{3} \erf \left (b x +a \right )\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(d*x^2+c)*x^3*erf(b*x+a),x)

[Out]

int(exp(d*x^2+c)*x^3*erf(b*x+a),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {{\left (d x^{2} e^{c} - e^{c}\right )} \operatorname {erf}\left (b x + a\right ) e^{\left (d x^{2}\right )}}{2 \, d^{2}} - \frac {-\frac {{\left (\frac {\sqrt {\pi } {\left (a b + {\left (b^{2} - d\right )} x\right )} a^{2} b^{2} {\left (\operatorname {erf}\left (\sqrt {\frac {{\left (a b + {\left (b^{2} - d\right )} x\right )}^{2}}{b^{2} - d}}\right ) - 1\right )}}{{\left (-b^{2} + d\right )}^{\frac {5}{2}} \sqrt {\frac {{\left (a b + {\left (b^{2} - d\right )} x\right )}^{2}}{b^{2} - d}}} - \frac {2 \, a b e^{\left (-\frac {{\left (a b + {\left (b^{2} - d\right )} x\right )}^{2}}{b^{2} - d}\right )}}{{\left (-b^{2} + d\right )}^{\frac {3}{2}}} - \frac {{\left (a b + {\left (b^{2} - d\right )} x\right )}^{3} \Gamma \left (\frac {3}{2}, \frac {{\left (a b + {\left (b^{2} - d\right )} x\right )}^{2}}{b^{2} - d}\right )}{{\left (-b^{2} + d\right )}^{\frac {5}{2}} \left (\frac {{\left (a b + {\left (b^{2} - d\right )} x\right )}^{2}}{b^{2} - d}\right )^{\frac {3}{2}}}\right )} b d e^{\left (\frac {a^{2} b^{2}}{b^{2} - d} - a^{2} + c\right )}}{2 \, \sqrt {-b^{2} + d}} - \frac {\sqrt {\pi } b \operatorname {erf}\left (\frac {a b}{\sqrt {b^{2} - d}} + \sqrt {b^{2} - d} x\right ) e^{\left (\frac {a^{2} b^{2}}{b^{2} - d} - a^{2} + c\right )}}{2 \, \sqrt {b^{2} - d}}}{\sqrt {\pi } d^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(d*x^2+c)*x^3*erf(b*x+a),x, algorithm="maxima")

[Out]

1/2*(d*x^2*e^c - e^c)*erf(b*x + a)*e^(d*x^2)/d^2 - integrate((b*d*x^2*e^c - b*e^c)*e^(-b^2*x^2 - 2*a*b*x + d*x
^2 - a^2), x)/(sqrt(pi)*d^2)

________________________________________________________________________________________

mupad [B]  time = 1.16, size = 386, normalized size = 1.13 \[ \frac {\mathrm {erfi}\left (\frac {a\,b-x\,\left (d-b^2\right )}{\sqrt {d-b^2}}\right )\,\left (b^3\,{\mathrm {e}}^{\frac {c\,d}{d-b^2}-\frac {a^2\,d}{d-b^2}-\frac {b^2\,c}{d-b^2}}+2\,a^2\,b^3\,{\mathrm {e}}^{\frac {c\,d}{d-b^2}-\frac {a^2\,d}{d-b^2}-\frac {b^2\,c}{d-b^2}}-b\,d\,{\mathrm {e}}^{\frac {c\,d}{d-b^2}-\frac {a^2\,d}{d-b^2}-\frac {b^2\,c}{d-b^2}}\right )}{4\,d\,{\left (d-b^2\right )}^{5/2}}-\frac {\frac {a\,b^2\,{\mathrm {e}}^{-a^2-2\,a\,b\,x-b^2\,x^2+d\,x^2+c}}{2\,{\left (d-b^2\right )}^2}+\frac {b\,x\,{\mathrm {e}}^{-a^2-2\,a\,b\,x-b^2\,x^2+d\,x^2+c}}{2\,\left (d-b^2\right )}}{d\,\sqrt {\pi }}-\mathrm {erf}\left (a+b\,x\right )\,\left (\frac {{\mathrm {e}}^{d\,x^2+c}}{2\,d^2}-\frac {x^2\,{\mathrm {e}}^{d\,x^2+c}}{2\,d}\right )+\frac {b\,\mathrm {erf}\left (\frac {a\,b\,1{}\mathrm {i}-x\,\left (d-b^2\right )\,1{}\mathrm {i}}{\sqrt {d-b^2}}\right )\,{\mathrm {e}}^{c-a^2-\frac {a^2\,b^2}{d-b^2}}\,1{}\mathrm {i}}{2\,d^2\,\sqrt {d-b^2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*erf(a + b*x)*exp(c + d*x^2),x)

[Out]

(erfi((a*b - x*(d - b^2))/(d - b^2)^(1/2))*(b^3*exp((c*d)/(d - b^2) - (a^2*d)/(d - b^2) - (b^2*c)/(d - b^2)) +
 2*a^2*b^3*exp((c*d)/(d - b^2) - (a^2*d)/(d - b^2) - (b^2*c)/(d - b^2)) - b*d*exp((c*d)/(d - b^2) - (a^2*d)/(d
 - b^2) - (b^2*c)/(d - b^2))))/(4*d*(d - b^2)^(5/2)) - ((a*b^2*exp(c + d*x^2 - a^2 - b^2*x^2 - 2*a*b*x))/(2*(d
 - b^2)^2) + (b*x*exp(c + d*x^2 - a^2 - b^2*x^2 - 2*a*b*x))/(2*(d - b^2)))/(d*pi^(1/2)) - erf(a + b*x)*(exp(c
+ d*x^2)/(2*d^2) - (x^2*exp(c + d*x^2))/(2*d)) + (b*erf((a*b*1i - x*(d - b^2)*1i)/(d - b^2)^(1/2))*exp(c - a^2
 - (a^2*b^2)/(d - b^2))*1i)/(2*d^2*(d - b^2)^(1/2))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(d*x**2+c)*x**3*erf(b*x+a),x)

[Out]

Timed out

________________________________________________________________________________________