3.47 \(\int e^{c-b^2 x^2} \text {erf}(b x)^2 \, dx\)

Optimal. Leaf size=21 \[ \frac {\sqrt {\pi } e^c \text {erf}(b x)^3}{6 b} \]

[Out]

1/6*exp(c)*erf(b*x)^3*Pi^(1/2)/b

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 21, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {6373, 30} \[ \frac {\sqrt {\pi } e^c \text {Erf}(b x)^3}{6 b} \]

Antiderivative was successfully verified.

[In]

Int[E^(c - b^2*x^2)*Erf[b*x]^2,x]

[Out]

(E^c*Sqrt[Pi]*Erf[b*x]^3)/(6*b)

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 6373

Int[E^((c_.) + (d_.)*(x_)^2)*Erf[(b_.)*(x_)]^(n_.), x_Symbol] :> Dist[(E^c*Sqrt[Pi])/(2*b), Subst[Int[x^n, x],
 x, Erf[b*x]], x] /; FreeQ[{b, c, d, n}, x] && EqQ[d, -b^2]

Rubi steps

\begin {align*} \int e^{c-b^2 x^2} \text {erf}(b x)^2 \, dx &=\frac {\left (e^c \sqrt {\pi }\right ) \operatorname {Subst}\left (\int x^2 \, dx,x,\text {erf}(b x)\right )}{2 b}\\ &=\frac {e^c \sqrt {\pi } \text {erf}(b x)^3}{6 b}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 21, normalized size = 1.00 \[ \frac {\sqrt {\pi } e^c \text {erf}(b x)^3}{6 b} \]

Antiderivative was successfully verified.

[In]

Integrate[E^(c - b^2*x^2)*Erf[b*x]^2,x]

[Out]

(E^c*Sqrt[Pi]*Erf[b*x]^3)/(6*b)

________________________________________________________________________________________

fricas [A]  time = 0.60, size = 16, normalized size = 0.76 \[ \frac {\sqrt {\pi } \operatorname {erf}\left (b x\right )^{3} e^{c}}{6 \, b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(-b^2*x^2+c)*erf(b*x)^2,x, algorithm="fricas")

[Out]

1/6*sqrt(pi)*erf(b*x)^3*e^c/b

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \operatorname {erf}\left (b x\right )^{2} e^{\left (-b^{2} x^{2} + c\right )}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(-b^2*x^2+c)*erf(b*x)^2,x, algorithm="giac")

[Out]

integrate(erf(b*x)^2*e^(-b^2*x^2 + c), x)

________________________________________________________________________________________

maple [A]  time = 0.01, size = 17, normalized size = 0.81 \[ \frac {{\mathrm e}^{c} \erf \left (b x \right )^{3} \sqrt {\pi }}{6 b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(-b^2*x^2+c)*erf(b*x)^2,x)

[Out]

1/6*exp(c)*erf(b*x)^3*Pi^(1/2)/b

________________________________________________________________________________________

maxima [A]  time = 0.32, size = 16, normalized size = 0.76 \[ \frac {\sqrt {\pi } \operatorname {erf}\left (b x\right )^{3} e^{c}}{6 \, b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(-b^2*x^2+c)*erf(b*x)^2,x, algorithm="maxima")

[Out]

1/6*sqrt(pi)*erf(b*x)^3*e^c/b

________________________________________________________________________________________

mupad [B]  time = 0.11, size = 16, normalized size = 0.76 \[ \frac {\sqrt {\pi }\,{\mathrm {e}}^c\,{\mathrm {erf}\left (b\,x\right )}^3}{6\,b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(c - b^2*x^2)*erf(b*x)^2,x)

[Out]

(pi^(1/2)*exp(c)*erf(b*x)^3)/(6*b)

________________________________________________________________________________________

sympy [A]  time = 1.74, size = 19, normalized size = 0.90 \[ \begin {cases} \frac {\sqrt {\pi } e^{c} \operatorname {erf}^{3}{\left (b x \right )}}{6 b} & \text {for}\: b \neq 0 \\0 & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(-b**2*x**2+c)*erf(b*x)**2,x)

[Out]

Piecewise((sqrt(pi)*exp(c)*erf(b*x)**3/(6*b), Ne(b, 0)), (0, True))

________________________________________________________________________________________