3.63 \(\int \frac {e^{\text {sech}^{-1}(a x^p)}}{x} \, dx\)

Optimal. Leaf size=87 \[ -\frac {x^{-p}}{a p}-\frac {\sqrt {\frac {1}{a x^p+1}} \sqrt {a x^p+1} \sin ^{-1}\left (a x^p\right )}{p}-\frac {x^{-p} \sqrt {1-a x^p}}{a p \sqrt {\frac {1}{a x^p+1}}} \]

[Out]

-1/a/p/(x^p)-(1-a*x^p)^(1/2)/a/p/(x^p)/(1/(1+a*x^p))^(1/2)-arcsin(a*x^p)*(1/(1+a*x^p))^(1/2)*(1+a*x^p)^(1/2)/p

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 106, normalized size of antiderivative = 1.22, number of steps used = 6, number of rules used = 6, integrand size = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {6334, 259, 345, 242, 277, 216} \[ -\frac {x^{-p} \sqrt {\frac {1}{a x^p+1}} \sqrt {a x^p+1} \sqrt {1-a^2 x^{2 p}}}{a p}-\frac {x^{-p}}{a p}-\frac {\sqrt {\frac {1}{a x^p+1}} \sqrt {a x^p+1} \csc ^{-1}\left (\frac {x^{-p}}{a}\right )}{p} \]

Warning: Unable to verify antiderivative.

[In]

Int[E^ArcSech[a*x^p]/x,x]

[Out]

-(1/(a*p*x^p)) - (Sqrt[(1 + a*x^p)^(-1)]*Sqrt[1 + a*x^p]*Sqrt[1 - a^2*x^(2*p)])/(a*p*x^p) - (Sqrt[(1 + a*x^p)^
(-1)]*Sqrt[1 + a*x^p]*ArcCsc[1/(a*x^p)])/p

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 242

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + b/x^n)^p/x^2, x], x, 1/x] /; FreeQ[{a, b, p},
x] && ILtQ[n, 0]

Rule 259

Int[((c_.)*(x_))^(m_.)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[(c*x)
^m*(a1*a2 + b1*b2*x^(2*n))^p, x] /; FreeQ[{a1, b1, a2, b2, c, m, n, p}, x] && EqQ[a2*b1 + a1*b2, 0] && (Intege
rQ[p] || (GtQ[a1, 0] && GtQ[a2, 0]))

Rule 277

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^p)/(c*(m +
1)), x] - Dist[(b*n*p)/(c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] &&
IGtQ[n, 0] && GtQ[p, 0] && LtQ[m, -1] &&  !ILtQ[(m + n*p + n + 1)/n, 0] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 345

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/(m + 1), Subst[Int[(a + b*x^Simplify[n/(m +
1)])^p, x], x, x^(m + 1)], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[n/(m + 1)]] &&  !IntegerQ[n]

Rule 6334

Int[E^ArcSech[(a_.)*(x_)^(p_.)]/(x_), x_Symbol] :> -Simp[(a*p*x^p)^(-1), x] + Dist[(Sqrt[1 + a*x^p]*Sqrt[1/(1
+ a*x^p)])/a, Int[(Sqrt[1 + a*x^p]*Sqrt[1 - a*x^p])/x^(p + 1), x], x] /; FreeQ[{a, p}, x]

Rubi steps

\begin {align*} \int \frac {e^{\text {sech}^{-1}\left (a x^p\right )}}{x} \, dx &=-\frac {x^{-p}}{a p}+\frac {\left (\sqrt {\frac {1}{1+a x^p}} \sqrt {1+a x^p}\right ) \int x^{-1-p} \sqrt {1-a x^p} \sqrt {1+a x^p} \, dx}{a}\\ &=-\frac {x^{-p}}{a p}+\frac {\left (\sqrt {\frac {1}{1+a x^p}} \sqrt {1+a x^p}\right ) \int x^{-1-p} \sqrt {1-a^2 x^{2 p}} \, dx}{a}\\ &=-\frac {x^{-p}}{a p}-\frac {\left (\sqrt {\frac {1}{1+a x^p}} \sqrt {1+a x^p}\right ) \operatorname {Subst}\left (\int \sqrt {1-\frac {a^2}{x^2}} \, dx,x,x^{-p}\right )}{a p}\\ &=-\frac {x^{-p}}{a p}+\frac {\left (\sqrt {\frac {1}{1+a x^p}} \sqrt {1+a x^p}\right ) \operatorname {Subst}\left (\int \frac {\sqrt {1-a^2 x^2}}{x^2} \, dx,x,x^p\right )}{a p}\\ &=-\frac {x^{-p}}{a p}-\frac {x^{-p} \sqrt {\frac {1}{1+a x^p}} \sqrt {1+a x^p} \sqrt {1-a^2 x^{2 p}}}{a p}-\frac {\left (a \sqrt {\frac {1}{1+a x^p}} \sqrt {1+a x^p}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-a^2 x^2}} \, dx,x,x^p\right )}{p}\\ &=-\frac {x^{-p}}{a p}-\frac {x^{-p} \sqrt {\frac {1}{1+a x^p}} \sqrt {1+a x^p} \sqrt {1-a^2 x^{2 p}}}{a p}-\frac {\sqrt {\frac {1}{1+a x^p}} \sqrt {1+a x^p} \sin ^{-1}\left (a x^p\right )}{p}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.16, size = 96, normalized size = 1.10 \[ -\frac {i \left (a \log \left (2 \sqrt {\frac {1-a x^p}{a x^p+1}} \left (a x^p+1\right )-2 i a x^p\right )-i \left (a+x^{-p}\right ) \sqrt {\frac {1-a x^p}{a x^p+1}}-i x^{-p}\right )}{a p} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^ArcSech[a*x^p]/x,x]

[Out]

((-I)*((-I)/x^p - I*(a + x^(-p))*Sqrt[(1 - a*x^p)/(1 + a*x^p)] + a*Log[(-2*I)*a*x^p + 2*Sqrt[(1 - a*x^p)/(1 +
a*x^p)]*(1 + a*x^p)]))/(a*p)

________________________________________________________________________________________

fricas [A]  time = 0.70, size = 102, normalized size = 1.17 \[ -\frac {a x^{p} \sqrt {\frac {a x^{p} + 1}{a x^{p}}} \sqrt {-\frac {a x^{p} - 1}{a x^{p}}} - a x^{p} \arctan \left (\sqrt {\frac {a x^{p} + 1}{a x^{p}}} \sqrt {-\frac {a x^{p} - 1}{a x^{p}}}\right ) + 1}{a p x^{p}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1/a/(x^p)+(1/a/(x^p)-1)^(1/2)*(1/a/(x^p)+1)^(1/2))/x,x, algorithm="fricas")

[Out]

-(a*x^p*sqrt((a*x^p + 1)/(a*x^p))*sqrt(-(a*x^p - 1)/(a*x^p)) - a*x^p*arctan(sqrt((a*x^p + 1)/(a*x^p))*sqrt(-(a
*x^p - 1)/(a*x^p))) + 1)/(a*p*x^p)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {\frac {1}{a x^{p}} + 1} \sqrt {\frac {1}{a x^{p}} - 1} + \frac {1}{a x^{p}}}{x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1/a/(x^p)+(1/a/(x^p)-1)^(1/2)*(1/a/(x^p)+1)^(1/2))/x,x, algorithm="giac")

[Out]

integrate((sqrt(1/(a*x^p) + 1)*sqrt(1/(a*x^p) - 1) + 1/(a*x^p))/x, x)

________________________________________________________________________________________

maple [C]  time = 0.15, size = 145, normalized size = 1.67 \[ -\frac {\sqrt {-\frac {\left (a \,x^{p}-1\right ) x^{-p}}{a}}\, \sqrt {\frac {\left (1+a \,x^{p}\right ) x^{-p}}{a}}\, \mathrm {csgn}\relax (a ) \arctan \left (\frac {\mathrm {csgn}\relax (a ) a \,x^{p}}{\sqrt {1-a^{2} x^{2 p}}}\right ) x^{p} a}{p \sqrt {1-a^{2} x^{2 p}}}-\frac {\sqrt {-\frac {\left (a \,x^{p}-1\right ) x^{-p}}{a}}\, \sqrt {\frac {\left (1+a \,x^{p}\right ) x^{-p}}{a}}\, \mathrm {csgn}\relax (a )^{2}}{p}-\frac {x^{-p}}{a p} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1/a/(x^p)+(1/a/(x^p)-1)^(1/2)*(1/a/(x^p)+1)^(1/2))/x,x)

[Out]

-1/p*(-(a*x^p-1)/a/(x^p))^(1/2)*((1+a*x^p)/a/(x^p))^(1/2)*csgn(a)/(-(x^p)^2*a^2+1)^(1/2)*arctan(csgn(a)*a*x^p/
(-(x^p)^2*a^2+1)^(1/2))*x^p*a-1/p*(-(a*x^p-1)/a/(x^p))^(1/2)*((1+a*x^p)/a/(x^p))^(1/2)*csgn(a)^2-1/a/p/(x^p)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {\int \frac {\sqrt {a x^{p} + 1} \sqrt {-a x^{p} + 1}}{x x^{p}}\,{d x}}{a} - \frac {1}{a p x^{p}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1/a/(x^p)+(1/a/(x^p)-1)^(1/2)*(1/a/(x^p)+1)^(1/2))/x,x, algorithm="maxima")

[Out]

integrate(sqrt(a*x^p + 1)*sqrt(-a*x^p + 1)/(x*x^p), x)/a - 1/(a*p*x^p)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\sqrt {\frac {1}{a\,x^p}-1}\,\sqrt {\frac {1}{a\,x^p}+1}+\frac {1}{a\,x^p}}{x} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((1/(a*x^p) - 1)^(1/2)*(1/(a*x^p) + 1)^(1/2) + 1/(a*x^p))/x,x)

[Out]

int(((1/(a*x^p) - 1)^(1/2)*(1/(a*x^p) + 1)^(1/2) + 1/(a*x^p))/x, x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1/a/(x**p)+(1/a/(x**p)-1)**(1/2)*(1/a/(x**p)+1)**(1/2))/x,x)

[Out]

Timed out

________________________________________________________________________________________