3.61 \(\int e^{\text {sech}^{-1}(a x^p)} x \, dx\)

Optimal. Leaf size=119 \[ \frac {p x^{2-p} \sqrt {\frac {1}{a x^p+1}} \sqrt {a x^p+1} \, _2F_1\left (\frac {1}{2},\frac {1}{2} \left (\frac {2}{p}-1\right );\frac {1}{2} \left (1+\frac {2}{p}\right );a^2 x^{2 p}\right )}{2 a (2-p)}+\frac {p x^{2-p}}{2 a (2-p)}+\frac {1}{2} x^2 e^{\text {sech}^{-1}\left (a x^p\right )} \]

[Out]

1/2*(1/a/(x^p)+(1/a/(x^p)-1)^(1/2)*(1/a/(x^p)+1)^(1/2))*x^2+1/2*p*x^(2-p)/a/(2-p)+1/2*p*x^(2-p)*hypergeom([1/2
, -1/2+1/p],[1/2+1/p],a^2*x^(2*p))*(1/(1+a*x^p))^(1/2)*(1+a*x^p)^(1/2)/a/(2-p)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 119, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {6335, 30, 259, 364} \[ \frac {p x^{2-p} \sqrt {\frac {1}{a x^p+1}} \sqrt {a x^p+1} \, _2F_1\left (\frac {1}{2},\frac {1}{2} \left (\frac {2}{p}-1\right );\frac {1}{2} \left (1+\frac {2}{p}\right );a^2 x^{2 p}\right )}{2 a (2-p)}+\frac {p x^{2-p}}{2 a (2-p)}+\frac {1}{2} x^2 e^{\text {sech}^{-1}\left (a x^p\right )} \]

Antiderivative was successfully verified.

[In]

Int[E^ArcSech[a*x^p]*x,x]

[Out]

(E^ArcSech[a*x^p]*x^2)/2 + (p*x^(2 - p))/(2*a*(2 - p)) + (p*x^(2 - p)*Sqrt[(1 + a*x^p)^(-1)]*Sqrt[1 + a*x^p]*H
ypergeometric2F1[1/2, (-1 + 2/p)/2, (1 + 2/p)/2, a^2*x^(2*p)])/(2*a*(2 - p))

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 259

Int[((c_.)*(x_))^(m_.)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[(c*x)
^m*(a1*a2 + b1*b2*x^(2*n))^p, x] /; FreeQ[{a1, b1, a2, b2, c, m, n, p}, x] && EqQ[a2*b1 + a1*b2, 0] && (Intege
rQ[p] || (GtQ[a1, 0] && GtQ[a2, 0]))

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rule 6335

Int[E^ArcSech[(a_.)*(x_)^(p_.)]*(x_)^(m_.), x_Symbol] :> Simp[(x^(m + 1)*E^ArcSech[a*x^p])/(m + 1), x] + (Dist
[p/(a*(m + 1)), Int[x^(m - p), x], x] + Dist[(p*Sqrt[1 + a*x^p]*Sqrt[1/(1 + a*x^p)])/(a*(m + 1)), Int[x^(m - p
)/(Sqrt[1 + a*x^p]*Sqrt[1 - a*x^p]), x], x]) /; FreeQ[{a, m, p}, x] && NeQ[m, -1]

Rubi steps

\begin {align*} \int e^{\text {sech}^{-1}\left (a x^p\right )} x \, dx &=\frac {1}{2} e^{\text {sech}^{-1}\left (a x^p\right )} x^2+\frac {p \int x^{1-p} \, dx}{2 a}+\frac {\left (p \sqrt {\frac {1}{1+a x^p}} \sqrt {1+a x^p}\right ) \int \frac {x^{1-p}}{\sqrt {1-a x^p} \sqrt {1+a x^p}} \, dx}{2 a}\\ &=\frac {1}{2} e^{\text {sech}^{-1}\left (a x^p\right )} x^2+\frac {p x^{2-p}}{2 a (2-p)}+\frac {\left (p \sqrt {\frac {1}{1+a x^p}} \sqrt {1+a x^p}\right ) \int \frac {x^{1-p}}{\sqrt {1-a^2 x^{2 p}}} \, dx}{2 a}\\ &=\frac {1}{2} e^{\text {sech}^{-1}\left (a x^p\right )} x^2+\frac {p x^{2-p}}{2 a (2-p)}+\frac {p x^{2-p} \sqrt {\frac {1}{1+a x^p}} \sqrt {1+a x^p} \, _2F_1\left (\frac {1}{2},\frac {1}{2} \left (-1+\frac {2}{p}\right );\frac {1}{2} \left (1+\frac {2}{p}\right );a^2 x^{2 p}\right )}{2 a (2-p)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.31, size = 159, normalized size = 1.34 \[ \frac {x^{2-p} \left (\frac {a^2 p x^{2 p} \sqrt {\frac {1-a x^p}{a x^p+1}} \sqrt {1-a^2 x^{2 p}} \, _2F_1\left (\frac {1}{2},\frac {1}{2}+\frac {1}{p};\frac {3}{2}+\frac {1}{p};a^2 x^{2 p}\right )}{(p+2) \left (a x^p-1\right )}-a x^p \sqrt {\frac {1-a x^p}{a x^p+1}}-\sqrt {\frac {1-a x^p}{a x^p+1}}-1\right )}{a (p-2)} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^ArcSech[a*x^p]*x,x]

[Out]

(x^(2 - p)*(-1 - Sqrt[(1 - a*x^p)/(1 + a*x^p)] - a*x^p*Sqrt[(1 - a*x^p)/(1 + a*x^p)] + (a^2*p*x^(2*p)*Sqrt[(1
- a*x^p)/(1 + a*x^p)]*Sqrt[1 - a^2*x^(2*p)]*Hypergeometric2F1[1/2, 1/2 + p^(-1), 3/2 + p^(-1), a^2*x^(2*p)])/(
(2 + p)*(-1 + a*x^p))))/(a*(-2 + p))

________________________________________________________________________________________

fricas [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1/a/(x^p)+(1/a/(x^p)-1)^(1/2)*(1/a/(x^p)+1)^(1/2))*x,x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (ha
s polynomial part)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int x {\left (\sqrt {\frac {1}{a x^{p}} + 1} \sqrt {\frac {1}{a x^{p}} - 1} + \frac {1}{a x^{p}}\right )}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1/a/(x^p)+(1/a/(x^p)-1)^(1/2)*(1/a/(x^p)+1)^(1/2))*x,x, algorithm="giac")

[Out]

integrate(x*(sqrt(1/(a*x^p) + 1)*sqrt(1/(a*x^p) - 1) + 1/(a*x^p)), x)

________________________________________________________________________________________

maple [F]  time = 1.06, size = 0, normalized size = 0.00 \[ \int \left (\frac {x^{-p}}{a}+\sqrt {\frac {x^{-p}}{a}-1}\, \sqrt {\frac {x^{-p}}{a}+1}\right ) x\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1/a/(x^p)+(1/a/(x^p)-1)^(1/2)*(1/a/(x^p)+1)^(1/2))*x,x)

[Out]

int((1/a/(x^p)+(1/a/(x^p)-1)^(1/2)*(1/a/(x^p)+1)^(1/2))*x,x)

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1/a/(x^p)+(1/a/(x^p)-1)^(1/2)*(1/a/(x^p)+1)^(1/2))*x,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(1-p>0)', see `assume?` for mor
e details)Is 1-p equal to -1?

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int x\,\left (\sqrt {\frac {1}{a\,x^p}-1}\,\sqrt {\frac {1}{a\,x^p}+1}+\frac {1}{a\,x^p}\right ) \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*((1/(a*x^p) - 1)^(1/2)*(1/(a*x^p) + 1)^(1/2) + 1/(a*x^p)),x)

[Out]

int(x*((1/(a*x^p) - 1)^(1/2)*(1/(a*x^p) + 1)^(1/2) + 1/(a*x^p)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {\int x x^{- p}\, dx + \int a x \sqrt {-1 + \frac {x^{- p}}{a}} \sqrt {1 + \frac {x^{- p}}{a}}\, dx}{a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1/a/(x**p)+(1/a/(x**p)-1)**(1/2)*(1/a/(x**p)+1)**(1/2))*x,x)

[Out]

(Integral(x*x**(-p), x) + Integral(a*x*sqrt(-1 + x**(-p)/a)*sqrt(1 + x**(-p)/a), x))/a

________________________________________________________________________________________