3.57 \(\int e^{\text {sech}^{-1}(a x^2)} x^m \, dx\)

Optimal. Leaf size=107 \[ -\frac {2 \sqrt {\frac {1}{a x^2+1}} \sqrt {a x^2+1} x^{m-1} \, _2F_1\left (\frac {1}{2},\frac {m-1}{4};\frac {m+3}{4};a^2 x^4\right )}{a \left (1-m^2\right )}-\frac {2 x^{m-1}}{a \left (1-m^2\right )}+\frac {x^{m+1} e^{\text {sech}^{-1}\left (a x^2\right )}}{m+1} \]

[Out]

-2*x^(-1+m)/a/(-m^2+1)+(1/a/x^2+(1/a/x^2-1)^(1/2)*(1/a/x^2+1)^(1/2))*x^(1+m)/(1+m)-2*x^(-1+m)*hypergeom([1/2,
-1/4+1/4*m],[3/4+1/4*m],a^2*x^4)*(1/(a*x^2+1))^(1/2)*(a*x^2+1)^(1/2)/a/(-m^2+1)

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 107, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {6335, 30, 259, 364} \[ -\frac {2 \sqrt {\frac {1}{a x^2+1}} \sqrt {a x^2+1} x^{m-1} \, _2F_1\left (\frac {1}{2},\frac {m-1}{4};\frac {m+3}{4};a^2 x^4\right )}{a \left (1-m^2\right )}-\frac {2 x^{m-1}}{a \left (1-m^2\right )}+\frac {x^{m+1} e^{\text {sech}^{-1}\left (a x^2\right )}}{m+1} \]

Antiderivative was successfully verified.

[In]

Int[E^ArcSech[a*x^2]*x^m,x]

[Out]

(-2*x^(-1 + m))/(a*(1 - m^2)) + (E^ArcSech[a*x^2]*x^(1 + m))/(1 + m) - (2*x^(-1 + m)*Sqrt[(1 + a*x^2)^(-1)]*Sq
rt[1 + a*x^2]*Hypergeometric2F1[1/2, (-1 + m)/4, (3 + m)/4, a^2*x^4])/(a*(1 - m^2))

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 259

Int[((c_.)*(x_))^(m_.)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[(c*x)
^m*(a1*a2 + b1*b2*x^(2*n))^p, x] /; FreeQ[{a1, b1, a2, b2, c, m, n, p}, x] && EqQ[a2*b1 + a1*b2, 0] && (Intege
rQ[p] || (GtQ[a1, 0] && GtQ[a2, 0]))

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rule 6335

Int[E^ArcSech[(a_.)*(x_)^(p_.)]*(x_)^(m_.), x_Symbol] :> Simp[(x^(m + 1)*E^ArcSech[a*x^p])/(m + 1), x] + (Dist
[p/(a*(m + 1)), Int[x^(m - p), x], x] + Dist[(p*Sqrt[1 + a*x^p]*Sqrt[1/(1 + a*x^p)])/(a*(m + 1)), Int[x^(m - p
)/(Sqrt[1 + a*x^p]*Sqrt[1 - a*x^p]), x], x]) /; FreeQ[{a, m, p}, x] && NeQ[m, -1]

Rubi steps

\begin {align*} \int e^{\text {sech}^{-1}\left (a x^2\right )} x^m \, dx &=\frac {e^{\text {sech}^{-1}\left (a x^2\right )} x^{1+m}}{1+m}+\frac {2 \int x^{-2+m} \, dx}{a (1+m)}+\frac {\left (2 \sqrt {\frac {1}{1+a x^2}} \sqrt {1+a x^2}\right ) \int \frac {x^{-2+m}}{\sqrt {1-a x^2} \sqrt {1+a x^2}} \, dx}{a (1+m)}\\ &=-\frac {2 x^{-1+m}}{a \left (1-m^2\right )}+\frac {e^{\text {sech}^{-1}\left (a x^2\right )} x^{1+m}}{1+m}+\frac {\left (2 \sqrt {\frac {1}{1+a x^2}} \sqrt {1+a x^2}\right ) \int \frac {x^{-2+m}}{\sqrt {1-a^2 x^4}} \, dx}{a (1+m)}\\ &=-\frac {2 x^{-1+m}}{a \left (1-m^2\right )}+\frac {e^{\text {sech}^{-1}\left (a x^2\right )} x^{1+m}}{1+m}-\frac {2 x^{-1+m} \sqrt {\frac {1}{1+a x^2}} \sqrt {1+a x^2} \, _2F_1\left (\frac {1}{2},\frac {1}{4} (-1+m);\frac {3+m}{4};a^2 x^4\right )}{a \left (1-m^2\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 2.39, size = 159, normalized size = 1.49 \[ \frac {2^{\frac {m+1}{2}} x^{m+1} \left (a x^2\right )^{\frac {1}{2} (-m-1)} e^{\text {sech}^{-1}\left (a x^2\right )} \left (\frac {e^{\text {sech}^{-1}\left (a x^2\right )}}{e^{2 \text {sech}^{-1}\left (a x^2\right )}+1}\right )^{\frac {m+1}{2}} \left ((m+7) \, _2F_1\left (1,\frac {1-m}{4};\frac {m+7}{4};-e^{2 \text {sech}^{-1}\left (a x^2\right )}\right )-(m+3) e^{2 \text {sech}^{-1}\left (a x^2\right )} \, _2F_1\left (1,\frac {5-m}{4};\frac {m+11}{4};-e^{2 \text {sech}^{-1}\left (a x^2\right )}\right )\right )}{(m+3) (m+7)} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^ArcSech[a*x^2]*x^m,x]

[Out]

(2^((1 + m)/2)*E^ArcSech[a*x^2]*(E^ArcSech[a*x^2]/(1 + E^(2*ArcSech[a*x^2])))^((1 + m)/2)*x^(1 + m)*(a*x^2)^((
-1 - m)/2)*((7 + m)*Hypergeometric2F1[1, (1 - m)/4, (7 + m)/4, -E^(2*ArcSech[a*x^2])] - E^(2*ArcSech[a*x^2])*(
3 + m)*Hypergeometric2F1[1, (5 - m)/4, (11 + m)/4, -E^(2*ArcSech[a*x^2])]))/((3 + m)*(7 + m))

________________________________________________________________________________________

fricas [F]  time = 1.63, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {a x^{2} x^{m} \sqrt {\frac {a x^{2} + 1}{a x^{2}}} \sqrt {-\frac {a x^{2} - 1}{a x^{2}}} + x^{m}}{a x^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1/a/x^2+(1/a/x^2-1)^(1/2)*(1/a/x^2+1)^(1/2))*x^m,x, algorithm="fricas")

[Out]

integral((a*x^2*x^m*sqrt((a*x^2 + 1)/(a*x^2))*sqrt(-(a*x^2 - 1)/(a*x^2)) + x^m)/(a*x^2), x)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1/a/x^2+(1/a/x^2-1)^(1/2)*(1/a/x^2+1)^(1/2))*x^m,x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Warn
ing, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Check [ab
s(x)]sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

maple [F]  time = 0.07, size = 0, normalized size = 0.00 \[ \int \left (\frac {1}{a \,x^{2}}+\sqrt {\frac {1}{a \,x^{2}}-1}\, \sqrt {\frac {1}{a \,x^{2}}+1}\right ) x^{m}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1/a/x^2+(1/a/x^2-1)^(1/2)*(1/a/x^2+1)^(1/2))*x^m,x)

[Out]

int((1/a/x^2+(1/a/x^2-1)^(1/2)*(1/a/x^2+1)^(1/2))*x^m,x)

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1/a/x^2+(1/a/x^2-1)^(1/2)*(1/a/x^2+1)^(1/2))*x^m,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(m-2>0)', see `assume?` for mor
e details)Is m-2 equal to -1?

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int x^m\,\left (\sqrt {\frac {1}{a\,x^2}-1}\,\sqrt {\frac {1}{a\,x^2}+1}+\frac {1}{a\,x^2}\right ) \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^m*((1/(a*x^2) - 1)^(1/2)*(1/(a*x^2) + 1)^(1/2) + 1/(a*x^2)),x)

[Out]

int(x^m*((1/(a*x^2) - 1)^(1/2)*(1/(a*x^2) + 1)^(1/2) + 1/(a*x^2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {\int \frac {x^{m}}{x^{2}}\, dx + \int a x^{m} \sqrt {-1 + \frac {1}{a x^{2}}} \sqrt {1 + \frac {1}{a x^{2}}}\, dx}{a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1/a/x**2+(1/a/x**2-1)**(1/2)*(1/a/x**2+1)**(1/2))*x**m,x)

[Out]

(Integral(x**m/x**2, x) + Integral(a*x**m*sqrt(-1 + 1/(a*x**2))*sqrt(1 + 1/(a*x**2)), x))/a

________________________________________________________________________________________