3.4 \(\int \text {sech}^{-1}(a+b x) \, dx\)

Optimal. Leaf size=44 \[ \frac {(a+b x) \text {sech}^{-1}(a+b x)}{b}-\frac {2 \tan ^{-1}\left (\sqrt {\frac {-a-b x+1}{a+b x+1}}\right )}{b} \]

[Out]

(b*x+a)*arcsech(b*x+a)/b-2*arctan(((-b*x-a+1)/(b*x+a+1))^(1/2))/b

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 44, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.667, Rules used = {6313, 1961, 12, 203} \[ \frac {(a+b x) \text {sech}^{-1}(a+b x)}{b}-\frac {2 \tan ^{-1}\left (\sqrt {\frac {-a-b x+1}{a+b x+1}}\right )}{b} \]

Antiderivative was successfully verified.

[In]

Int[ArcSech[a + b*x],x]

[Out]

((a + b*x)*ArcSech[a + b*x])/b - (2*ArcTan[Sqrt[(1 - a - b*x)/(1 + a + b*x)]])/b

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 1961

Int[(u_)^(r_.)*(((e_.)*((a_.) + (b_.)*(x_)^(n_.)))/((c_) + (d_.)*(x_)^(n_.)))^(p_), x_Symbol] :> With[{q = Den
ominator[p]}, Dist[(q*e*(b*c - a*d))/n, Subst[Int[SimplifyIntegrand[(x^(q*(p + 1) - 1)*(-(a*e) + c*x^q)^(1/n -
 1)*(u /. x -> (-(a*e) + c*x^q)^(1/n)/(b*e - d*x^q)^(1/n))^r)/(b*e - d*x^q)^(1/n + 1), x], x], x, ((e*(a + b*x
^n))/(c + d*x^n))^(1/q)], x]] /; FreeQ[{a, b, c, d, e}, x] && PolynomialQ[u, x] && FractionQ[p] && IntegerQ[1/
n] && IntegerQ[r]

Rule 6313

Int[ArcSech[(c_) + (d_.)*(x_)], x_Symbol] :> Simp[((c + d*x)*ArcSech[c + d*x])/d, x] + Int[Sqrt[(1 - c - d*x)/
(1 + c + d*x)]/(1 - c - d*x), x] /; FreeQ[{c, d}, x]

Rubi steps

\begin {align*} \int \text {sech}^{-1}(a+b x) \, dx &=\frac {(a+b x) \text {sech}^{-1}(a+b x)}{b}+\int \frac {\sqrt {\frac {1-a-b x}{1+a+b x}}}{1-a-b x} \, dx\\ &=\frac {(a+b x) \text {sech}^{-1}(a+b x)}{b}-(4 b) \operatorname {Subst}\left (\int \frac {1}{2 b^2 \left (1+x^2\right )} \, dx,x,\sqrt {\frac {1-a-b x}{1+a+b x}}\right )\\ &=\frac {(a+b x) \text {sech}^{-1}(a+b x)}{b}-\frac {2 \operatorname {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\sqrt {\frac {1-a-b x}{1+a+b x}}\right )}{b}\\ &=\frac {(a+b x) \text {sech}^{-1}(a+b x)}{b}-\frac {2 \tan ^{-1}\left (\sqrt {\frac {1-a-b x}{1+a+b x}}\right )}{b}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 0.31, size = 125, normalized size = 2.84 \[ x \text {sech}^{-1}(a+b x)-\frac {2 b \sqrt {-\frac {a+b x-1}{a+b x+1}} \left (\sqrt {-b} \sinh ^{-1}\left (\frac {\sqrt {a+b x-1}}{\sqrt {2}}\right )-a \sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {-b} \sqrt {\frac {a+b x-1}{a+b x+1}}}{\sqrt {b}}\right )\right )}{(-b)^{5/2} \sqrt {\frac {a+b x-1}{a+b x+1}}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[ArcSech[a + b*x],x]

[Out]

x*ArcSech[a + b*x] - (2*b*Sqrt[-((-1 + a + b*x)/(1 + a + b*x))]*(Sqrt[-b]*ArcSinh[Sqrt[-1 + a + b*x]/Sqrt[2]]
- a*Sqrt[b]*ArcTanh[(Sqrt[-b]*Sqrt[(-1 + a + b*x)/(1 + a + b*x)])/Sqrt[b]]))/((-b)^(5/2)*Sqrt[(-1 + a + b*x)/(
1 + a + b*x)])

________________________________________________________________________________________

fricas [B]  time = 0.76, size = 253, normalized size = 5.75 \[ \frac {2 \, b x \log \left (\frac {{\left (b x + a\right )} \sqrt {-\frac {b^{2} x^{2} + 2 \, a b x + a^{2} - 1}{b^{2} x^{2} + 2 \, a b x + a^{2}}} + 1}{b x + a}\right ) + a \log \left (\frac {{\left (b x + a\right )} \sqrt {-\frac {b^{2} x^{2} + 2 \, a b x + a^{2} - 1}{b^{2} x^{2} + 2 \, a b x + a^{2}}} + 1}{x}\right ) - a \log \left (\frac {{\left (b x + a\right )} \sqrt {-\frac {b^{2} x^{2} + 2 \, a b x + a^{2} - 1}{b^{2} x^{2} + 2 \, a b x + a^{2}}} - 1}{x}\right ) - 2 \, \arctan \left (\frac {{\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )} \sqrt {-\frac {b^{2} x^{2} + 2 \, a b x + a^{2} - 1}{b^{2} x^{2} + 2 \, a b x + a^{2}}}}{b^{2} x^{2} + 2 \, a b x + a^{2} - 1}\right )}{2 \, b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arcsech(b*x+a),x, algorithm="fricas")

[Out]

1/2*(2*b*x*log(((b*x + a)*sqrt(-(b^2*x^2 + 2*a*b*x + a^2 - 1)/(b^2*x^2 + 2*a*b*x + a^2)) + 1)/(b*x + a)) + a*l
og(((b*x + a)*sqrt(-(b^2*x^2 + 2*a*b*x + a^2 - 1)/(b^2*x^2 + 2*a*b*x + a^2)) + 1)/x) - a*log(((b*x + a)*sqrt(-
(b^2*x^2 + 2*a*b*x + a^2 - 1)/(b^2*x^2 + 2*a*b*x + a^2)) - 1)/x) - 2*arctan((b^2*x^2 + 2*a*b*x + a^2)*sqrt(-(b
^2*x^2 + 2*a*b*x + a^2 - 1)/(b^2*x^2 + 2*a*b*x + a^2))/(b^2*x^2 + 2*a*b*x + a^2 - 1)))/b

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \operatorname {arsech}\left (b x + a\right )\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arcsech(b*x+a),x, algorithm="giac")

[Out]

integrate(arcsech(b*x + a), x)

________________________________________________________________________________________

maple [A]  time = 0.05, size = 50, normalized size = 1.14 \[ x \,\mathrm {arcsech}\left (b x +a \right )+\frac {\mathrm {arcsech}\left (b x +a \right ) a}{b}-\frac {\arctan \left (\sqrt {\frac {1}{b x +a}-1}\, \sqrt {\frac {1}{b x +a}+1}\right )}{b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arcsech(b*x+a),x)

[Out]

x*arcsech(b*x+a)+1/b*arcsech(b*x+a)*a-1/b*arctan((1/(b*x+a)-1)^(1/2)*(1/(b*x+a)+1)^(1/2))

________________________________________________________________________________________

maxima [A]  time = 0.30, size = 31, normalized size = 0.70 \[ \frac {{\left (b x + a\right )} \operatorname {arsech}\left (b x + a\right ) - \arctan \left (\sqrt {\frac {1}{{\left (b x + a\right )}^{2}} - 1}\right )}{b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arcsech(b*x+a),x, algorithm="maxima")

[Out]

((b*x + a)*arcsech(b*x + a) - arctan(sqrt(1/(b*x + a)^2 - 1)))/b

________________________________________________________________________________________

mupad [B]  time = 2.16, size = 43, normalized size = 0.98 \[ \frac {\mathrm {atan}\left (\frac {1}{\sqrt {\frac {1}{a+b\,x}-1}\,\sqrt {\frac {1}{a+b\,x}+1}}\right )+\mathrm {acosh}\left (\frac {1}{a+b\,x}\right )\,\left (a+b\,x\right )}{b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(acosh(1/(a + b*x)),x)

[Out]

(atan(1/((1/(a + b*x) - 1)^(1/2)*(1/(a + b*x) + 1)^(1/2))) + acosh(1/(a + b*x))*(a + b*x))/b

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \operatorname {asech}{\left (a + b x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(asech(b*x+a),x)

[Out]

Integral(asech(a + b*x), x)

________________________________________________________________________________________