3.35 \(\int e^{\text {sech}^{-1}(a x)} x \, dx\)

Optimal. Leaf size=53 \[ \frac {\sqrt {\frac {1}{a x+1}} \sqrt {a x+1} \sin ^{-1}(a x)}{2 a^2}+\frac {1}{2} x^2 e^{\text {sech}^{-1}(a x)}+\frac {x}{2 a} \]

[Out]

1/2*x/a+1/2*(1/a/x+(1/a/x-1)^(1/2)*(1+1/a/x)^(1/2))*x^2+1/2*arcsin(a*x)*(1/(a*x+1))^(1/2)*(a*x+1)^(1/2)/a^2

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 53, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {6335, 8, 41, 216} \[ \frac {\sqrt {\frac {1}{a x+1}} \sqrt {a x+1} \sin ^{-1}(a x)}{2 a^2}+\frac {1}{2} x^2 e^{\text {sech}^{-1}(a x)}+\frac {x}{2 a} \]

Antiderivative was successfully verified.

[In]

Int[E^ArcSech[a*x]*x,x]

[Out]

x/(2*a) + (E^ArcSech[a*x]*x^2)/2 + (Sqrt[(1 + a*x)^(-1)]*Sqrt[1 + a*x]*ArcSin[a*x])/(2*a^2)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 41

Int[((a_) + (b_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(m_.), x_Symbol] :> Int[(a*c + b*d*x^2)^m, x] /; FreeQ[{a, b
, c, d, m}, x] && EqQ[b*c + a*d, 0] && (IntegerQ[m] || (GtQ[a, 0] && GtQ[c, 0]))

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 6335

Int[E^ArcSech[(a_.)*(x_)^(p_.)]*(x_)^(m_.), x_Symbol] :> Simp[(x^(m + 1)*E^ArcSech[a*x^p])/(m + 1), x] + (Dist
[p/(a*(m + 1)), Int[x^(m - p), x], x] + Dist[(p*Sqrt[1 + a*x^p]*Sqrt[1/(1 + a*x^p)])/(a*(m + 1)), Int[x^(m - p
)/(Sqrt[1 + a*x^p]*Sqrt[1 - a*x^p]), x], x]) /; FreeQ[{a, m, p}, x] && NeQ[m, -1]

Rubi steps

\begin {align*} \int e^{\text {sech}^{-1}(a x)} x \, dx &=\frac {1}{2} e^{\text {sech}^{-1}(a x)} x^2+\frac {\int 1 \, dx}{2 a}+\frac {\left (\sqrt {\frac {1}{1+a x}} \sqrt {1+a x}\right ) \int \frac {1}{\sqrt {1-a x} \sqrt {1+a x}} \, dx}{2 a}\\ &=\frac {x}{2 a}+\frac {1}{2} e^{\text {sech}^{-1}(a x)} x^2+\frac {\left (\sqrt {\frac {1}{1+a x}} \sqrt {1+a x}\right ) \int \frac {1}{\sqrt {1-a^2 x^2}} \, dx}{2 a}\\ &=\frac {x}{2 a}+\frac {1}{2} e^{\text {sech}^{-1}(a x)} x^2+\frac {\sqrt {\frac {1}{1+a x}} \sqrt {1+a x} \sin ^{-1}(a x)}{2 a^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.08, size = 75, normalized size = 1.42 \[ \frac {2 a x+a x \sqrt {\frac {1-a x}{a x+1}} (a x+1)+i \log \left (2 \sqrt {\frac {1-a x}{a x+1}} (a x+1)-2 i a x\right )}{2 a^2} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^ArcSech[a*x]*x,x]

[Out]

(2*a*x + a*x*Sqrt[(1 - a*x)/(1 + a*x)]*(1 + a*x) + I*Log[(-2*I)*a*x + 2*Sqrt[(1 - a*x)/(1 + a*x)]*(1 + a*x)])/
(2*a^2)

________________________________________________________________________________________

fricas [A]  time = 0.62, size = 79, normalized size = 1.49 \[ \frac {a^{2} x^{2} \sqrt {\frac {a x + 1}{a x}} \sqrt {-\frac {a x - 1}{a x}} + 2 \, a x - \arctan \left (\sqrt {\frac {a x + 1}{a x}} \sqrt {-\frac {a x - 1}{a x}}\right )}{2 \, a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1/a/x+(1/a/x-1)^(1/2)*(1+1/a/x)^(1/2))*x,x, algorithm="fricas")

[Out]

1/2*(a^2*x^2*sqrt((a*x + 1)/(a*x))*sqrt(-(a*x - 1)/(a*x)) + 2*a*x - arctan(sqrt((a*x + 1)/(a*x))*sqrt(-(a*x -
1)/(a*x))))/a^2

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int x {\left (\sqrt {\frac {1}{a x} + 1} \sqrt {\frac {1}{a x} - 1} + \frac {1}{a x}\right )}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1/a/x+(1/a/x-1)^(1/2)*(1+1/a/x)^(1/2))*x,x, algorithm="giac")

[Out]

integrate(x*(sqrt(1/(a*x) + 1)*sqrt(1/(a*x) - 1) + 1/(a*x)), x)

________________________________________________________________________________________

maple [C]  time = 0.05, size = 92, normalized size = 1.74 \[ \frac {\sqrt {-\frac {a x -1}{a x}}\, x \sqrt {\frac {a x +1}{a x}}\, \left (x \sqrt {-a^{2} x^{2}+1}\, \mathrm {csgn}\relax (a ) a +\arctan \left (\frac {\mathrm {csgn}\relax (a ) a x}{\sqrt {-a^{2} x^{2}+1}}\right )\right ) \mathrm {csgn}\relax (a )}{2 \sqrt {-a^{2} x^{2}+1}\, a}+\frac {x}{a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1/a/x+(1/a/x-1)^(1/2)*(1+1/a/x)^(1/2))*x,x)

[Out]

1/2*(-(a*x-1)/a/x)^(1/2)*x*((a*x+1)/a/x)^(1/2)*(x*(-a^2*x^2+1)^(1/2)*csgn(a)*a+arctan(csgn(a)*a*x/(-a^2*x^2+1)
^(1/2)))/(-a^2*x^2+1)^(1/2)*csgn(a)/a+x/a

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {x}{a} + \frac {\frac {1}{2} \, \sqrt {-a^{2} x^{2} + 1} x + \frac {\arcsin \left (a x\right )}{2 \, a}}{a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1/a/x+(1/a/x-1)^(1/2)*(1+1/a/x)^(1/2))*x,x, algorithm="maxima")

[Out]

x/a + integrate(sqrt(a*x + 1)*sqrt(-a*x + 1), x)/a

________________________________________________________________________________________

mupad [B]  time = 6.96, size = 303, normalized size = 5.72 \[ \frac {\ln \left (\frac {{\left (\sqrt {\frac {1}{a\,x}-1}-\mathrm {i}\right )}^2}{{\left (\sqrt {\frac {1}{a\,x}+1}-1\right )}^2}+1\right )\,1{}\mathrm {i}}{2\,a^2}-\frac {\ln \left (\frac {\sqrt {\frac {1}{a\,x}-1}-\mathrm {i}}{\sqrt {\frac {1}{a\,x}+1}-1}\right )\,1{}\mathrm {i}}{2\,a^2}+\frac {\frac {1{}\mathrm {i}}{32\,a^2}+\frac {{\left (\sqrt {\frac {1}{a\,x}-1}-\mathrm {i}\right )}^2\,1{}\mathrm {i}}{16\,a^2\,{\left (\sqrt {\frac {1}{a\,x}+1}-1\right )}^2}-\frac {{\left (\sqrt {\frac {1}{a\,x}-1}-\mathrm {i}\right )}^4\,15{}\mathrm {i}}{32\,a^2\,{\left (\sqrt {\frac {1}{a\,x}+1}-1\right )}^4}}{\frac {{\left (\sqrt {\frac {1}{a\,x}-1}-\mathrm {i}\right )}^2}{{\left (\sqrt {\frac {1}{a\,x}+1}-1\right )}^2}+\frac {2\,{\left (\sqrt {\frac {1}{a\,x}-1}-\mathrm {i}\right )}^4}{{\left (\sqrt {\frac {1}{a\,x}+1}-1\right )}^4}+\frac {{\left (\sqrt {\frac {1}{a\,x}-1}-\mathrm {i}\right )}^6}{{\left (\sqrt {\frac {1}{a\,x}+1}-1\right )}^6}}+\frac {x}{a}+\frac {{\left (\sqrt {\frac {1}{a\,x}-1}-\mathrm {i}\right )}^2\,1{}\mathrm {i}}{32\,a^2\,{\left (\sqrt {\frac {1}{a\,x}+1}-1\right )}^2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*((1/(a*x) - 1)^(1/2)*(1/(a*x) + 1)^(1/2) + 1/(a*x)),x)

[Out]

(log(((1/(a*x) - 1)^(1/2) - 1i)^2/((1/(a*x) + 1)^(1/2) - 1)^2 + 1)*1i)/(2*a^2) - (log(((1/(a*x) - 1)^(1/2) - 1
i)/((1/(a*x) + 1)^(1/2) - 1))*1i)/(2*a^2) + (1i/(32*a^2) + (((1/(a*x) - 1)^(1/2) - 1i)^2*1i)/(16*a^2*((1/(a*x)
 + 1)^(1/2) - 1)^2) - (((1/(a*x) - 1)^(1/2) - 1i)^4*15i)/(32*a^2*((1/(a*x) + 1)^(1/2) - 1)^4))/(((1/(a*x) - 1)
^(1/2) - 1i)^2/((1/(a*x) + 1)^(1/2) - 1)^2 + (2*((1/(a*x) - 1)^(1/2) - 1i)^4)/((1/(a*x) + 1)^(1/2) - 1)^4 + ((
1/(a*x) - 1)^(1/2) - 1i)^6/((1/(a*x) + 1)^(1/2) - 1)^6) + x/a + (((1/(a*x) - 1)^(1/2) - 1i)^2*1i)/(32*a^2*((1/
(a*x) + 1)^(1/2) - 1)^2)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1/a/x+(1/a/x-1)**(1/2)*(1+1/a/x)**(1/2))*x,x)

[Out]

Timed out

________________________________________________________________________________________