3.95 \(\int e^{-\frac {3}{2} \coth ^{-1}(a x)} x^4 \, dx\)

Optimal. Leaf size=253 \[ -\frac {237 \tan ^{-1}\left (\frac {\sqrt [4]{\frac {1}{a x}+1}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{128 a^5}-\frac {237 \tanh ^{-1}\left (\frac {\sqrt [4]{\frac {1}{a x}+1}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{128 a^5}+\frac {557 x \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}}{640 a^4}-\frac {157 x^2 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}}{320 a^3}+\frac {5 x^3 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}}{16 a^2}+\frac {1}{5} x^5 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}-\frac {11 x^4 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}}{40 a} \]

[Out]

557/640*(1-1/a/x)^(3/4)*(1+1/a/x)^(1/4)*x/a^4-157/320*(1-1/a/x)^(3/4)*(1+1/a/x)^(1/4)*x^2/a^3+5/16*(1-1/a/x)^(
3/4)*(1+1/a/x)^(1/4)*x^3/a^2-11/40*(1-1/a/x)^(3/4)*(1+1/a/x)^(1/4)*x^4/a+1/5*(1-1/a/x)^(3/4)*(1+1/a/x)^(1/4)*x
^5-237/128*arctan((1+1/a/x)^(1/4)/(1-1/a/x)^(1/4))/a^5-237/128*arctanh((1+1/a/x)^(1/4)/(1-1/a/x)^(1/4))/a^5

________________________________________________________________________________________

Rubi [A]  time = 0.14, antiderivative size = 253, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 8, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.571, Rules used = {6171, 99, 151, 12, 93, 212, 206, 203} \[ \frac {5 x^3 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}}{16 a^2}-\frac {157 x^2 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}}{320 a^3}+\frac {557 x \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}}{640 a^4}-\frac {237 \tan ^{-1}\left (\frac {\sqrt [4]{\frac {1}{a x}+1}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{128 a^5}-\frac {237 \tanh ^{-1}\left (\frac {\sqrt [4]{\frac {1}{a x}+1}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{128 a^5}+\frac {1}{5} x^5 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}-\frac {11 x^4 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}}{40 a} \]

Antiderivative was successfully verified.

[In]

Int[x^4/E^((3*ArcCoth[a*x])/2),x]

[Out]

(557*(1 - 1/(a*x))^(3/4)*(1 + 1/(a*x))^(1/4)*x)/(640*a^4) - (157*(1 - 1/(a*x))^(3/4)*(1 + 1/(a*x))^(1/4)*x^2)/
(320*a^3) + (5*(1 - 1/(a*x))^(3/4)*(1 + 1/(a*x))^(1/4)*x^3)/(16*a^2) - (11*(1 - 1/(a*x))^(3/4)*(1 + 1/(a*x))^(
1/4)*x^4)/(40*a) + ((1 - 1/(a*x))^(3/4)*(1 + 1/(a*x))^(1/4)*x^5)/5 - (237*ArcTan[(1 + 1/(a*x))^(1/4)/(1 - 1/(a
*x))^(1/4)])/(128*a^5) - (237*ArcTanh[(1 + 1/(a*x))^(1/4)/(1 - 1/(a*x))^(1/4)])/(128*a^5)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 99

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/((m + 1)*(b*e - a*f)), x] - Dist[1/((m + 1)*(b*e - a*f)), Int[(a +
b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[d*e*n + c*f*(m + p + 2) + d*f*(m + n + p + 2)*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 0] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 151

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*
f)), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegerQ[m]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b), 2]
]}, Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
 !GtQ[a/b, 0]

Rule 6171

Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(x_)^(m_.), x_Symbol] :> -Subst[Int[(1 + x/a)^(n/2)/(x^(m + 2)*(1 - x/a)^(n/2
)), x], x, 1/x] /; FreeQ[{a, n}, x] &&  !IntegerQ[n] && IntegerQ[m]

Rubi steps

\begin {align*} \int e^{-\frac {3}{2} \coth ^{-1}(a x)} x^4 \, dx &=-\operatorname {Subst}\left (\int \frac {\left (1-\frac {x}{a}\right )^{3/4}}{x^6 \left (1+\frac {x}{a}\right )^{3/4}} \, dx,x,\frac {1}{x}\right )\\ &=\frac {1}{5} \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^5-\frac {1}{5} \operatorname {Subst}\left (\int \frac {-\frac {11}{2 a}+\frac {4 x}{a^2}}{x^5 \sqrt [4]{1-\frac {x}{a}} \left (1+\frac {x}{a}\right )^{3/4}} \, dx,x,\frac {1}{x}\right )\\ &=-\frac {11 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^4}{40 a}+\frac {1}{5} \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^5+\frac {1}{20} \operatorname {Subst}\left (\int \frac {-\frac {75}{4 a^2}+\frac {33 x}{2 a^3}}{x^4 \sqrt [4]{1-\frac {x}{a}} \left (1+\frac {x}{a}\right )^{3/4}} \, dx,x,\frac {1}{x}\right )\\ &=\frac {5 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^3}{16 a^2}-\frac {11 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^4}{40 a}+\frac {1}{5} \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^5-\frac {1}{60} \operatorname {Subst}\left (\int \frac {-\frac {471}{8 a^3}+\frac {75 x}{2 a^4}}{x^3 \sqrt [4]{1-\frac {x}{a}} \left (1+\frac {x}{a}\right )^{3/4}} \, dx,x,\frac {1}{x}\right )\\ &=-\frac {157 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^2}{320 a^3}+\frac {5 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^3}{16 a^2}-\frac {11 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^4}{40 a}+\frac {1}{5} \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^5+\frac {1}{120} \operatorname {Subst}\left (\int \frac {-\frac {1671}{16 a^4}+\frac {471 x}{8 a^5}}{x^2 \sqrt [4]{1-\frac {x}{a}} \left (1+\frac {x}{a}\right )^{3/4}} \, dx,x,\frac {1}{x}\right )\\ &=\frac {557 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x}{640 a^4}-\frac {157 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^2}{320 a^3}+\frac {5 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^3}{16 a^2}-\frac {11 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^4}{40 a}+\frac {1}{5} \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^5-\frac {1}{120} \operatorname {Subst}\left (\int -\frac {3555}{32 a^5 x \sqrt [4]{1-\frac {x}{a}} \left (1+\frac {x}{a}\right )^{3/4}} \, dx,x,\frac {1}{x}\right )\\ &=\frac {557 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x}{640 a^4}-\frac {157 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^2}{320 a^3}+\frac {5 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^3}{16 a^2}-\frac {11 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^4}{40 a}+\frac {1}{5} \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^5+\frac {237 \operatorname {Subst}\left (\int \frac {1}{x \sqrt [4]{1-\frac {x}{a}} \left (1+\frac {x}{a}\right )^{3/4}} \, dx,x,\frac {1}{x}\right )}{256 a^5}\\ &=\frac {557 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x}{640 a^4}-\frac {157 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^2}{320 a^3}+\frac {5 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^3}{16 a^2}-\frac {11 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^4}{40 a}+\frac {1}{5} \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^5+\frac {237 \operatorname {Subst}\left (\int \frac {1}{-1+x^4} \, dx,x,\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{64 a^5}\\ &=\frac {557 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x}{640 a^4}-\frac {157 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^2}{320 a^3}+\frac {5 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^3}{16 a^2}-\frac {11 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^4}{40 a}+\frac {1}{5} \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^5-\frac {237 \operatorname {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{128 a^5}-\frac {237 \operatorname {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{128 a^5}\\ &=\frac {557 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x}{640 a^4}-\frac {157 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^2}{320 a^3}+\frac {5 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^3}{16 a^2}-\frac {11 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^4}{40 a}+\frac {1}{5} \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^5-\frac {237 \tan ^{-1}\left (\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{128 a^5}-\frac {237 \tanh ^{-1}\left (\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{128 a^5}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 5.34, size = 173, normalized size = 0.68 \[ \frac {\frac {5500 e^{\frac {1}{2} \coth ^{-1}(a x)}}{e^{2 \coth ^{-1}(a x)}-1}-\frac {14032 e^{\frac {5}{2} \coth ^{-1}(a x)}}{\left (e^{2 \coth ^{-1}(a x)}-1\right )^2}+\frac {23936 e^{\frac {9}{2} \coth ^{-1}(a x)}}{\left (e^{2 \coth ^{-1}(a x)}-1\right )^3}-\frac {22016 e^{\frac {13}{2} \coth ^{-1}(a x)}}{\left (e^{2 \coth ^{-1}(a x)}-1\right )^4}+\frac {8192 e^{\frac {17}{2} \coth ^{-1}(a x)}}{\left (e^{2 \coth ^{-1}(a x)}-1\right )^5}+1185 \log \left (1-e^{-\frac {1}{2} \coth ^{-1}(a x)}\right )-1185 \log \left (e^{-\frac {1}{2} \coth ^{-1}(a x)}+1\right )+2370 \tan ^{-1}\left (e^{-\frac {1}{2} \coth ^{-1}(a x)}\right )}{1280 a^5} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[x^4/E^((3*ArcCoth[a*x])/2),x]

[Out]

((8192*E^((17*ArcCoth[a*x])/2))/(-1 + E^(2*ArcCoth[a*x]))^5 - (22016*E^((13*ArcCoth[a*x])/2))/(-1 + E^(2*ArcCo
th[a*x]))^4 + (23936*E^((9*ArcCoth[a*x])/2))/(-1 + E^(2*ArcCoth[a*x]))^3 - (14032*E^((5*ArcCoth[a*x])/2))/(-1
+ E^(2*ArcCoth[a*x]))^2 + (5500*E^(ArcCoth[a*x]/2))/(-1 + E^(2*ArcCoth[a*x])) + 2370*ArcTan[E^(-1/2*ArcCoth[a*
x])] + 1185*Log[1 - E^(-1/2*ArcCoth[a*x])] - 1185*Log[1 + E^(-1/2*ArcCoth[a*x])])/(1280*a^5)

________________________________________________________________________________________

fricas [A]  time = 0.56, size = 119, normalized size = 0.47 \[ \frac {2 \, {\left (128 \, a^{5} x^{5} - 48 \, a^{4} x^{4} + 24 \, a^{3} x^{3} - 114 \, a^{2} x^{2} + 243 \, a x + 557\right )} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{4}} + 2370 \, \arctan \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right ) - 1185 \, \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + 1\right ) + 1185 \, \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} - 1\right )}{1280 \, a^{5}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*((a*x-1)/(a*x+1))^(3/4),x, algorithm="fricas")

[Out]

1/1280*(2*(128*a^5*x^5 - 48*a^4*x^4 + 24*a^3*x^3 - 114*a^2*x^2 + 243*a*x + 557)*((a*x - 1)/(a*x + 1))^(3/4) +
2370*arctan(((a*x - 1)/(a*x + 1))^(1/4)) - 1185*log(((a*x - 1)/(a*x + 1))^(1/4) + 1) + 1185*log(((a*x - 1)/(a*
x + 1))^(1/4) - 1))/a^5

________________________________________________________________________________________

giac [A]  time = 0.27, size = 234, normalized size = 0.92 \[ \frac {1}{1280} \, a {\left (\frac {2370 \, \arctan \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right )}{a^{6}} - \frac {1185 \, \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + 1\right )}{a^{6}} + \frac {1185 \, \log \left ({\left | \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} - 1 \right |}\right )}{a^{6}} + \frac {4 \, {\left (\frac {1440 \, {\left (a x - 1\right )} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{4}}}{a x + 1} - \frac {3710 \, {\left (a x - 1\right )}^{2} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{4}}}{{\left (a x + 1\right )}^{2}} + \frac {1992 \, {\left (a x - 1\right )}^{3} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{4}}}{{\left (a x + 1\right )}^{3}} - \frac {1375 \, {\left (a x - 1\right )}^{4} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{4}}}{{\left (a x + 1\right )}^{4}} - 395 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{4}}\right )}}{a^{6} {\left (\frac {a x - 1}{a x + 1} - 1\right )}^{5}}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*((a*x-1)/(a*x+1))^(3/4),x, algorithm="giac")

[Out]

1/1280*a*(2370*arctan(((a*x - 1)/(a*x + 1))^(1/4))/a^6 - 1185*log(((a*x - 1)/(a*x + 1))^(1/4) + 1)/a^6 + 1185*
log(abs(((a*x - 1)/(a*x + 1))^(1/4) - 1))/a^6 + 4*(1440*(a*x - 1)*((a*x - 1)/(a*x + 1))^(3/4)/(a*x + 1) - 3710
*(a*x - 1)^2*((a*x - 1)/(a*x + 1))^(3/4)/(a*x + 1)^2 + 1992*(a*x - 1)^3*((a*x - 1)/(a*x + 1))^(3/4)/(a*x + 1)^
3 - 1375*(a*x - 1)^4*((a*x - 1)/(a*x + 1))^(3/4)/(a*x + 1)^4 - 395*((a*x - 1)/(a*x + 1))^(3/4))/(a^6*((a*x - 1
)/(a*x + 1) - 1)^5))

________________________________________________________________________________________

maple [F]  time = 0.09, size = 0, normalized size = 0.00 \[ \int x^{4} \left (\frac {a x -1}{a x +1}\right )^{\frac {3}{4}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4*((a*x-1)/(a*x+1))^(3/4),x)

[Out]

int(x^4*((a*x-1)/(a*x+1))^(3/4),x)

________________________________________________________________________________________

maxima [A]  time = 0.41, size = 259, normalized size = 1.02 \[ -\frac {1}{1280} \, a {\left (\frac {4 \, {\left (1375 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {19}{4}} - 1992 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {15}{4}} + 3710 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {11}{4}} - 1440 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {7}{4}} + 395 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{4}}\right )}}{\frac {5 \, {\left (a x - 1\right )} a^{6}}{a x + 1} - \frac {10 \, {\left (a x - 1\right )}^{2} a^{6}}{{\left (a x + 1\right )}^{2}} + \frac {10 \, {\left (a x - 1\right )}^{3} a^{6}}{{\left (a x + 1\right )}^{3}} - \frac {5 \, {\left (a x - 1\right )}^{4} a^{6}}{{\left (a x + 1\right )}^{4}} + \frac {{\left (a x - 1\right )}^{5} a^{6}}{{\left (a x + 1\right )}^{5}} - a^{6}} - \frac {2370 \, \arctan \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right )}{a^{6}} + \frac {1185 \, \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + 1\right )}{a^{6}} - \frac {1185 \, \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} - 1\right )}{a^{6}}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*((a*x-1)/(a*x+1))^(3/4),x, algorithm="maxima")

[Out]

-1/1280*a*(4*(1375*((a*x - 1)/(a*x + 1))^(19/4) - 1992*((a*x - 1)/(a*x + 1))^(15/4) + 3710*((a*x - 1)/(a*x + 1
))^(11/4) - 1440*((a*x - 1)/(a*x + 1))^(7/4) + 395*((a*x - 1)/(a*x + 1))^(3/4))/(5*(a*x - 1)*a^6/(a*x + 1) - 1
0*(a*x - 1)^2*a^6/(a*x + 1)^2 + 10*(a*x - 1)^3*a^6/(a*x + 1)^3 - 5*(a*x - 1)^4*a^6/(a*x + 1)^4 + (a*x - 1)^5*a
^6/(a*x + 1)^5 - a^6) - 2370*arctan(((a*x - 1)/(a*x + 1))^(1/4))/a^6 + 1185*log(((a*x - 1)/(a*x + 1))^(1/4) +
1)/a^6 - 1185*log(((a*x - 1)/(a*x + 1))^(1/4) - 1)/a^6)

________________________________________________________________________________________

mupad [B]  time = 1.21, size = 229, normalized size = 0.91 \[ \frac {\frac {79\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{3/4}}{64}-\frac {9\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{7/4}}{2}+\frac {371\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{11/4}}{32}-\frac {249\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{15/4}}{40}+\frac {275\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{19/4}}{64}}{a^5+\frac {10\,a^5\,{\left (a\,x-1\right )}^2}{{\left (a\,x+1\right )}^2}-\frac {10\,a^5\,{\left (a\,x-1\right )}^3}{{\left (a\,x+1\right )}^3}+\frac {5\,a^5\,{\left (a\,x-1\right )}^4}{{\left (a\,x+1\right )}^4}-\frac {a^5\,{\left (a\,x-1\right )}^5}{{\left (a\,x+1\right )}^5}-\frac {5\,a^5\,\left (a\,x-1\right )}{a\,x+1}}+\frac {237\,\mathrm {atan}\left ({\left (\frac {a\,x-1}{a\,x+1}\right )}^{1/4}\right )}{128\,a^5}-\frac {237\,\mathrm {atanh}\left ({\left (\frac {a\,x-1}{a\,x+1}\right )}^{1/4}\right )}{128\,a^5} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4*((a*x - 1)/(a*x + 1))^(3/4),x)

[Out]

((79*((a*x - 1)/(a*x + 1))^(3/4))/64 - (9*((a*x - 1)/(a*x + 1))^(7/4))/2 + (371*((a*x - 1)/(a*x + 1))^(11/4))/
32 - (249*((a*x - 1)/(a*x + 1))^(15/4))/40 + (275*((a*x - 1)/(a*x + 1))^(19/4))/64)/(a^5 + (10*a^5*(a*x - 1)^2
)/(a*x + 1)^2 - (10*a^5*(a*x - 1)^3)/(a*x + 1)^3 + (5*a^5*(a*x - 1)^4)/(a*x + 1)^4 - (a^5*(a*x - 1)^5)/(a*x +
1)^5 - (5*a^5*(a*x - 1))/(a*x + 1)) + (237*atan(((a*x - 1)/(a*x + 1))^(1/4)))/(128*a^5) - (237*atanh(((a*x - 1
)/(a*x + 1))^(1/4)))/(128*a^5)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**4*((a*x-1)/(a*x+1))**(3/4),x)

[Out]

Timed out

________________________________________________________________________________________