3.914 \(\int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}}}{x} \, dx\)

Optimal. Leaf size=117 \[ \sqrt {c-\frac {c}{a^2 x^2}}-\frac {a x \sqrt {c-\frac {c}{a^2 x^2}} \sin ^{-1}(a x)}{\sqrt {1-a x} \sqrt {a x+1}}-\frac {2 a x \sqrt {c-\frac {c}{a^2 x^2}} \tanh ^{-1}\left (\sqrt {1-a x} \sqrt {a x+1}\right )}{\sqrt {1-a x} \sqrt {a x+1}} \]

[Out]

(c-c/a^2/x^2)^(1/2)-a*x*arcsin(a*x)*(c-c/a^2/x^2)^(1/2)/(-a*x+1)^(1/2)/(a*x+1)^(1/2)-2*a*x*arctanh((-a*x+1)^(1
/2)*(a*x+1)^(1/2))*(c-c/a^2/x^2)^(1/2)/(-a*x+1)^(1/2)/(a*x+1)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.53, antiderivative size = 117, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {6167, 6159, 6129, 98, 157, 41, 216, 92, 208} \[ \sqrt {c-\frac {c}{a^2 x^2}}-\frac {a x \sqrt {c-\frac {c}{a^2 x^2}} \sin ^{-1}(a x)}{\sqrt {1-a x} \sqrt {a x+1}}-\frac {2 a x \sqrt {c-\frac {c}{a^2 x^2}} \tanh ^{-1}\left (\sqrt {1-a x} \sqrt {a x+1}\right )}{\sqrt {1-a x} \sqrt {a x+1}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[c - c/(a^2*x^2)]/(E^(2*ArcCoth[a*x])*x),x]

[Out]

Sqrt[c - c/(a^2*x^2)] - (a*Sqrt[c - c/(a^2*x^2)]*x*ArcSin[a*x])/(Sqrt[1 - a*x]*Sqrt[1 + a*x]) - (2*a*Sqrt[c -
c/(a^2*x^2)]*x*ArcTanh[Sqrt[1 - a*x]*Sqrt[1 + a*x]])/(Sqrt[1 - a*x]*Sqrt[1 + a*x])

Rule 41

Int[((a_) + (b_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(m_.), x_Symbol] :> Int[(a*c + b*d*x^2)^m, x] /; FreeQ[{a, b
, c, d, m}, x] && EqQ[b*c + a*d, 0] && (IntegerQ[m] || (GtQ[a, 0] && GtQ[c, 0]))

Rule 92

Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))), x_Symbol] :> Dist[b*f, Subst[I
nt[1/(d*(b*e - a*f)^2 + b*f^2*x^2), x], x, Sqrt[a + b*x]*Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d, e, f}, x] &&
 EqQ[2*b*d*e - f*(b*c + a*d), 0]

Rule 98

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((b*c -
 a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^(p + 1))/(b*(b*e - a*f)*(m + 1)), x] + Dist[1/(b*(b*e - a*
f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) + c*f*(p + 1)) + b*c*(d
*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 157

Int[(((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/((a_.) + (b_.)*(x_)), x_Symbol]
 :> Dist[h/b, Int[(c + d*x)^n*(e + f*x)^p, x], x] + Dist[(b*g - a*h)/b, Int[((c + d*x)^n*(e + f*x)^p)/(a + b*x
), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 6129

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Dist[c^p, Int[(u*(1 + (d*x)/c)
^p*(1 + a*x)^(n/2))/(1 - a*x)^(n/2), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^2, 0] && (IntegerQ
[p] || GtQ[c, 0])

Rule 6159

Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_), x_Symbol] :> Dist[(x^(2*p)*(c + d/x^2)^p)/(
(1 - a*x)^p*(1 + a*x)^p), Int[(u*(1 - a*x)^p*(1 + a*x)^p*E^(n*ArcTanh[a*x]))/x^(2*p), x], x] /; FreeQ[{a, c, d
, n, p}, x] && EqQ[c + a^2*d, 0] &&  !IntegerQ[p] && IntegerQ[n/2] &&  !GtQ[c, 0]

Rule 6167

Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(u_.), x_Symbol] :> Dist[(-1)^(n/2), Int[u*E^(n*ArcTanh[a*x]), x], x] /; Free
Q[a, x] && IntegerQ[n/2]

Rubi steps

\begin {align*} \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}}}{x} \, dx &=-\int \frac {e^{-2 \tanh ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}}}{x} \, dx\\ &=-\frac {\left (\sqrt {c-\frac {c}{a^2 x^2}} x\right ) \int \frac {e^{-2 \tanh ^{-1}(a x)} \sqrt {1-a x} \sqrt {1+a x}}{x^2} \, dx}{\sqrt {1-a x} \sqrt {1+a x}}\\ &=-\frac {\left (\sqrt {c-\frac {c}{a^2 x^2}} x\right ) \int \frac {(1-a x)^{3/2}}{x^2 \sqrt {1+a x}} \, dx}{\sqrt {1-a x} \sqrt {1+a x}}\\ &=\sqrt {c-\frac {c}{a^2 x^2}}+\frac {\left (\sqrt {c-\frac {c}{a^2 x^2}} x\right ) \int \frac {2 a-a^2 x}{x \sqrt {1-a x} \sqrt {1+a x}} \, dx}{\sqrt {1-a x} \sqrt {1+a x}}\\ &=\sqrt {c-\frac {c}{a^2 x^2}}+\frac {\left (2 a \sqrt {c-\frac {c}{a^2 x^2}} x\right ) \int \frac {1}{x \sqrt {1-a x} \sqrt {1+a x}} \, dx}{\sqrt {1-a x} \sqrt {1+a x}}-\frac {\left (a^2 \sqrt {c-\frac {c}{a^2 x^2}} x\right ) \int \frac {1}{\sqrt {1-a x} \sqrt {1+a x}} \, dx}{\sqrt {1-a x} \sqrt {1+a x}}\\ &=\sqrt {c-\frac {c}{a^2 x^2}}-\frac {\left (a^2 \sqrt {c-\frac {c}{a^2 x^2}} x\right ) \int \frac {1}{\sqrt {1-a^2 x^2}} \, dx}{\sqrt {1-a x} \sqrt {1+a x}}-\frac {\left (2 a^2 \sqrt {c-\frac {c}{a^2 x^2}} x\right ) \operatorname {Subst}\left (\int \frac {1}{a-a x^2} \, dx,x,\sqrt {1-a x} \sqrt {1+a x}\right )}{\sqrt {1-a x} \sqrt {1+a x}}\\ &=\sqrt {c-\frac {c}{a^2 x^2}}-\frac {a \sqrt {c-\frac {c}{a^2 x^2}} x \sin ^{-1}(a x)}{\sqrt {1-a x} \sqrt {1+a x}}-\frac {2 a \sqrt {c-\frac {c}{a^2 x^2}} x \tanh ^{-1}\left (\sqrt {1-a x} \sqrt {1+a x}\right )}{\sqrt {1-a x} \sqrt {1+a x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.09, size = 82, normalized size = 0.70 \[ \frac {\sqrt {c-\frac {c}{a^2 x^2}} \left (\sqrt {a^2 x^2-1}+a x \log \left (\sqrt {a^2 x^2-1}+a x\right )+2 a x \tan ^{-1}\left (\frac {1}{\sqrt {a^2 x^2-1}}\right )\right )}{\sqrt {a^2 x^2-1}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sqrt[c - c/(a^2*x^2)]/(E^(2*ArcCoth[a*x])*x),x]

[Out]

(Sqrt[c - c/(a^2*x^2)]*(Sqrt[-1 + a^2*x^2] + 2*a*x*ArcTan[1/Sqrt[-1 + a^2*x^2]] + a*x*Log[a*x + Sqrt[-1 + a^2*
x^2]]))/Sqrt[-1 + a^2*x^2]

________________________________________________________________________________________

fricas [A]  time = 0.46, size = 252, normalized size = 2.15 \[ \left [-\sqrt {-c} \arctan \left (\frac {a^{2} \sqrt {-c} x^{2} \sqrt {\frac {a^{2} c x^{2} - c}{a^{2} x^{2}}}}{a^{2} c x^{2} - c}\right ) + \sqrt {-c} \log \left (-\frac {a^{2} c x^{2} - 2 \, a \sqrt {-c} x \sqrt {\frac {a^{2} c x^{2} - c}{a^{2} x^{2}}} - 2 \, c}{x^{2}}\right ) + \sqrt {\frac {a^{2} c x^{2} - c}{a^{2} x^{2}}}, 2 \, \sqrt {c} \arctan \left (\frac {a \sqrt {c} x \sqrt {\frac {a^{2} c x^{2} - c}{a^{2} x^{2}}}}{a^{2} c x^{2} - c}\right ) + \frac {1}{2} \, \sqrt {c} \log \left (2 \, a^{2} c x^{2} + 2 \, a^{2} \sqrt {c} x^{2} \sqrt {\frac {a^{2} c x^{2} - c}{a^{2} x^{2}}} - c\right ) + \sqrt {\frac {a^{2} c x^{2} - c}{a^{2} x^{2}}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c/a^2/x^2)^(1/2)*(a*x-1)/(a*x+1)/x,x, algorithm="fricas")

[Out]

[-sqrt(-c)*arctan(a^2*sqrt(-c)*x^2*sqrt((a^2*c*x^2 - c)/(a^2*x^2))/(a^2*c*x^2 - c)) + sqrt(-c)*log(-(a^2*c*x^2
 - 2*a*sqrt(-c)*x*sqrt((a^2*c*x^2 - c)/(a^2*x^2)) - 2*c)/x^2) + sqrt((a^2*c*x^2 - c)/(a^2*x^2)), 2*sqrt(c)*arc
tan(a*sqrt(c)*x*sqrt((a^2*c*x^2 - c)/(a^2*x^2))/(a^2*c*x^2 - c)) + 1/2*sqrt(c)*log(2*a^2*c*x^2 + 2*a^2*sqrt(c)
*x^2*sqrt((a^2*c*x^2 - c)/(a^2*x^2)) - c) + sqrt((a^2*c*x^2 - c)/(a^2*x^2))]

________________________________________________________________________________________

giac [A]  time = 0.28, size = 127, normalized size = 1.09 \[ -{\left (\frac {4 \, \sqrt {c} \arctan \left (-\frac {\sqrt {a^{2} c} x - \sqrt {a^{2} c x^{2} - c}}{\sqrt {c}}\right ) \mathrm {sgn}\relax (x)}{a} + \frac {\sqrt {c} \log \left ({\left | -\sqrt {a^{2} c} x + \sqrt {a^{2} c x^{2} - c} \right |}\right ) \mathrm {sgn}\relax (x)}{{\left | a \right |}} - \frac {2 \, c^{\frac {3}{2}} \mathrm {sgn}\relax (x)}{{\left ({\left (\sqrt {a^{2} c} x - \sqrt {a^{2} c x^{2} - c}\right )}^{2} + c\right )} {\left | a \right |}}\right )} {\left | a \right |} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c/a^2/x^2)^(1/2)*(a*x-1)/(a*x+1)/x,x, algorithm="giac")

[Out]

-(4*sqrt(c)*arctan(-(sqrt(a^2*c)*x - sqrt(a^2*c*x^2 - c))/sqrt(c))*sgn(x)/a + sqrt(c)*log(abs(-sqrt(a^2*c)*x +
 sqrt(a^2*c*x^2 - c)))*sgn(x)/abs(a) - 2*c^(3/2)*sgn(x)/(((sqrt(a^2*c)*x - sqrt(a^2*c*x^2 - c))^2 + c)*abs(a))
)*abs(a)

________________________________________________________________________________________

maple [B]  time = 0.06, size = 306, normalized size = 2.62 \[ -\frac {\sqrt {\frac {c \left (a^{2} x^{2}-1\right )}{a^{2} x^{2}}}\, \left (-\sqrt {-\frac {c}{a^{2}}}\, \sqrt {\frac {c \left (a^{2} x^{2}-1\right )}{a^{2}}}\, x^{2} a^{3} c +a^{3} \left (\frac {c \left (a^{2} x^{2}-1\right )}{a^{2}}\right )^{\frac {3}{2}} \sqrt {-\frac {c}{a^{2}}}+\sqrt {-\frac {c}{a^{2}}}\, c^{\frac {3}{2}} \ln \left (x \sqrt {c}+\sqrt {\frac {c \left (a^{2} x^{2}-1\right )}{a^{2}}}\right ) x a -2 \sqrt {-\frac {c}{a^{2}}}\, c^{\frac {3}{2}} \ln \left (\frac {\sqrt {c}\, \sqrt {\frac {\left (a x -1\right ) \left (a x +1\right ) c}{a^{2}}}+c x}{\sqrt {c}}\right ) x a +2 \sqrt {-\frac {c}{a^{2}}}\, \sqrt {\frac {\left (a x -1\right ) \left (a x +1\right ) c}{a^{2}}}\, x \,a^{2} c -2 \sqrt {\frac {c \left (a^{2} x^{2}-1\right )}{a^{2}}}\, a^{2} \sqrt {-\frac {c}{a^{2}}}\, c x -2 \ln \left (\frac {2 \sqrt {-\frac {c}{a^{2}}}\, \sqrt {\frac {c \left (a^{2} x^{2}-1\right )}{a^{2}}}\, a^{2}-2 c}{a^{2} x}\right ) x \,c^{2}\right )}{a \sqrt {\frac {c \left (a^{2} x^{2}-1\right )}{a^{2}}}\, \sqrt {-\frac {c}{a^{2}}}\, c} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c-c/a^2/x^2)^(1/2)/(a*x+1)*(a*x-1)/x,x)

[Out]

-(c*(a^2*x^2-1)/a^2/x^2)^(1/2)/a*(-(-c/a^2)^(1/2)*(c*(a^2*x^2-1)/a^2)^(1/2)*x^2*a^3*c+a^3*(c*(a^2*x^2-1)/a^2)^
(3/2)*(-c/a^2)^(1/2)+(-c/a^2)^(1/2)*c^(3/2)*ln(x*c^(1/2)+(c*(a^2*x^2-1)/a^2)^(1/2))*x*a-2*(-c/a^2)^(1/2)*c^(3/
2)*ln((c^(1/2)*((a*x-1)*(a*x+1)*c/a^2)^(1/2)+c*x)/c^(1/2))*x*a+2*(-c/a^2)^(1/2)*((a*x-1)*(a*x+1)*c/a^2)^(1/2)*
x*a^2*c-2*(c*(a^2*x^2-1)/a^2)^(1/2)*a^2*(-c/a^2)^(1/2)*c*x-2*ln(2*((-c/a^2)^(1/2)*(c*(a^2*x^2-1)/a^2)^(1/2)*a^
2-c)/a^2/x)*x*c^2)/(c*(a^2*x^2-1)/a^2)^(1/2)/(-c/a^2)^(1/2)/c

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (a x - 1\right )} \sqrt {c - \frac {c}{a^{2} x^{2}}}}{{\left (a x + 1\right )} x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c/a^2/x^2)^(1/2)*(a*x-1)/(a*x+1)/x,x, algorithm="maxima")

[Out]

integrate((a*x - 1)*sqrt(c - c/(a^2*x^2))/((a*x + 1)*x), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\sqrt {c-\frac {c}{a^2\,x^2}}\,\left (a\,x-1\right )}{x\,\left (a\,x+1\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((c - c/(a^2*x^2))^(1/2)*(a*x - 1))/(x*(a*x + 1)),x)

[Out]

int(((c - c/(a^2*x^2))^(1/2)*(a*x - 1))/(x*(a*x + 1)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {- c \left (-1 + \frac {1}{a x}\right ) \left (1 + \frac {1}{a x}\right )} \left (a x - 1\right )}{x \left (a x + 1\right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c/a**2/x**2)**(1/2)*(a*x-1)/(a*x+1)/x,x)

[Out]

Integral(sqrt(-c*(-1 + 1/(a*x))*(1 + 1/(a*x)))*(a*x - 1)/(x*(a*x + 1)), x)

________________________________________________________________________________________