3.887 \(\int e^{2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}} x^2 \, dx\)

Optimal. Leaf size=123 \[ \frac {x (a x+1)^2 \sqrt {c-\frac {c}{a^2 x^2}}}{3 a^2}+\frac {x (a x+1) \sqrt {c-\frac {c}{a^2 x^2}}}{3 a^2}+\frac {x \sqrt {c-\frac {c}{a^2 x^2}}}{a^2}-\frac {x \sqrt {c-\frac {c}{a^2 x^2}} \sin ^{-1}(a x)}{a^2 \sqrt {1-a x} \sqrt {a x+1}} \]

[Out]

x*(c-c/a^2/x^2)^(1/2)/a^2+1/3*x*(a*x+1)*(c-c/a^2/x^2)^(1/2)/a^2+1/3*x*(a*x+1)^2*(c-c/a^2/x^2)^(1/2)/a^2-x*arcs
in(a*x)*(c-c/a^2/x^2)^(1/2)/a^2/(-a*x+1)^(1/2)/(a*x+1)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.47, antiderivative size = 123, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.259, Rules used = {6167, 6159, 6129, 80, 50, 41, 216} \[ \frac {x (a x+1)^2 \sqrt {c-\frac {c}{a^2 x^2}}}{3 a^2}+\frac {x (a x+1) \sqrt {c-\frac {c}{a^2 x^2}}}{3 a^2}+\frac {x \sqrt {c-\frac {c}{a^2 x^2}}}{a^2}-\frac {x \sqrt {c-\frac {c}{a^2 x^2}} \sin ^{-1}(a x)}{a^2 \sqrt {1-a x} \sqrt {a x+1}} \]

Antiderivative was successfully verified.

[In]

Int[E^(2*ArcCoth[a*x])*Sqrt[c - c/(a^2*x^2)]*x^2,x]

[Out]

(Sqrt[c - c/(a^2*x^2)]*x)/a^2 + (Sqrt[c - c/(a^2*x^2)]*x*(1 + a*x))/(3*a^2) + (Sqrt[c - c/(a^2*x^2)]*x*(1 + a*
x)^2)/(3*a^2) - (Sqrt[c - c/(a^2*x^2)]*x*ArcSin[a*x])/(a^2*Sqrt[1 - a*x]*Sqrt[1 + a*x])

Rule 41

Int[((a_) + (b_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(m_.), x_Symbol] :> Int[(a*c + b*d*x^2)^m, x] /; FreeQ[{a, b
, c, d, m}, x] && EqQ[b*c + a*d, 0] && (IntegerQ[m] || (GtQ[a, 0] && GtQ[c, 0]))

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 80

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 6129

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Dist[c^p, Int[(u*(1 + (d*x)/c)
^p*(1 + a*x)^(n/2))/(1 - a*x)^(n/2), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^2, 0] && (IntegerQ
[p] || GtQ[c, 0])

Rule 6159

Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_), x_Symbol] :> Dist[(x^(2*p)*(c + d/x^2)^p)/(
(1 - a*x)^p*(1 + a*x)^p), Int[(u*(1 - a*x)^p*(1 + a*x)^p*E^(n*ArcTanh[a*x]))/x^(2*p), x], x] /; FreeQ[{a, c, d
, n, p}, x] && EqQ[c + a^2*d, 0] &&  !IntegerQ[p] && IntegerQ[n/2] &&  !GtQ[c, 0]

Rule 6167

Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(u_.), x_Symbol] :> Dist[(-1)^(n/2), Int[u*E^(n*ArcTanh[a*x]), x], x] /; Free
Q[a, x] && IntegerQ[n/2]

Rubi steps

\begin {align*} \int e^{2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}} x^2 \, dx &=-\int e^{2 \tanh ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}} x^2 \, dx\\ &=-\frac {\left (\sqrt {c-\frac {c}{a^2 x^2}} x\right ) \int e^{2 \tanh ^{-1}(a x)} x \sqrt {1-a x} \sqrt {1+a x} \, dx}{\sqrt {1-a x} \sqrt {1+a x}}\\ &=-\frac {\left (\sqrt {c-\frac {c}{a^2 x^2}} x\right ) \int \frac {x (1+a x)^{3/2}}{\sqrt {1-a x}} \, dx}{\sqrt {1-a x} \sqrt {1+a x}}\\ &=\frac {\sqrt {c-\frac {c}{a^2 x^2}} x (1+a x)^2}{3 a^2}-\frac {\left (2 \sqrt {c-\frac {c}{a^2 x^2}} x\right ) \int \frac {(1+a x)^{3/2}}{\sqrt {1-a x}} \, dx}{3 a \sqrt {1-a x} \sqrt {1+a x}}\\ &=\frac {\sqrt {c-\frac {c}{a^2 x^2}} x (1+a x)}{3 a^2}+\frac {\sqrt {c-\frac {c}{a^2 x^2}} x (1+a x)^2}{3 a^2}-\frac {\left (\sqrt {c-\frac {c}{a^2 x^2}} x\right ) \int \frac {\sqrt {1+a x}}{\sqrt {1-a x}} \, dx}{a \sqrt {1-a x} \sqrt {1+a x}}\\ &=\frac {\sqrt {c-\frac {c}{a^2 x^2}} x}{a^2}+\frac {\sqrt {c-\frac {c}{a^2 x^2}} x (1+a x)}{3 a^2}+\frac {\sqrt {c-\frac {c}{a^2 x^2}} x (1+a x)^2}{3 a^2}-\frac {\left (\sqrt {c-\frac {c}{a^2 x^2}} x\right ) \int \frac {1}{\sqrt {1-a x} \sqrt {1+a x}} \, dx}{a \sqrt {1-a x} \sqrt {1+a x}}\\ &=\frac {\sqrt {c-\frac {c}{a^2 x^2}} x}{a^2}+\frac {\sqrt {c-\frac {c}{a^2 x^2}} x (1+a x)}{3 a^2}+\frac {\sqrt {c-\frac {c}{a^2 x^2}} x (1+a x)^2}{3 a^2}-\frac {\left (\sqrt {c-\frac {c}{a^2 x^2}} x\right ) \int \frac {1}{\sqrt {1-a^2 x^2}} \, dx}{a \sqrt {1-a x} \sqrt {1+a x}}\\ &=\frac {\sqrt {c-\frac {c}{a^2 x^2}} x}{a^2}+\frac {\sqrt {c-\frac {c}{a^2 x^2}} x (1+a x)}{3 a^2}+\frac {\sqrt {c-\frac {c}{a^2 x^2}} x (1+a x)^2}{3 a^2}-\frac {\sqrt {c-\frac {c}{a^2 x^2}} x \sin ^{-1}(a x)}{a^2 \sqrt {1-a x} \sqrt {1+a x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.09, size = 84, normalized size = 0.68 \[ \frac {x \sqrt {c-\frac {c}{a^2 x^2}} \left (\sqrt {a^2 x^2-1} \left (a^2 x^2+3 a x+5\right )+3 \log \left (\sqrt {a^2 x^2-1}+a x\right )\right )}{3 a^2 \sqrt {a^2 x^2-1}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^(2*ArcCoth[a*x])*Sqrt[c - c/(a^2*x^2)]*x^2,x]

[Out]

(Sqrt[c - c/(a^2*x^2)]*x*(Sqrt[-1 + a^2*x^2]*(5 + 3*a*x + a^2*x^2) + 3*Log[a*x + Sqrt[-1 + a^2*x^2]]))/(3*a^2*
Sqrt[-1 + a^2*x^2])

________________________________________________________________________________________

fricas [A]  time = 0.57, size = 204, normalized size = 1.66 \[ \left [\frac {2 \, {\left (a^{3} x^{3} + 3 \, a^{2} x^{2} + 5 \, a x\right )} \sqrt {\frac {a^{2} c x^{2} - c}{a^{2} x^{2}}} + 3 \, \sqrt {c} \log \left (2 \, a^{2} c x^{2} + 2 \, a^{2} \sqrt {c} x^{2} \sqrt {\frac {a^{2} c x^{2} - c}{a^{2} x^{2}}} - c\right )}{6 \, a^{3}}, \frac {{\left (a^{3} x^{3} + 3 \, a^{2} x^{2} + 5 \, a x\right )} \sqrt {\frac {a^{2} c x^{2} - c}{a^{2} x^{2}}} - 3 \, \sqrt {-c} \arctan \left (\frac {a^{2} \sqrt {-c} x^{2} \sqrt {\frac {a^{2} c x^{2} - c}{a^{2} x^{2}}}}{a^{2} c x^{2} - c}\right )}{3 \, a^{3}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x-1)*(a*x+1)*x^2*(c-c/a^2/x^2)^(1/2),x, algorithm="fricas")

[Out]

[1/6*(2*(a^3*x^3 + 3*a^2*x^2 + 5*a*x)*sqrt((a^2*c*x^2 - c)/(a^2*x^2)) + 3*sqrt(c)*log(2*a^2*c*x^2 + 2*a^2*sqrt
(c)*x^2*sqrt((a^2*c*x^2 - c)/(a^2*x^2)) - c))/a^3, 1/3*((a^3*x^3 + 3*a^2*x^2 + 5*a*x)*sqrt((a^2*c*x^2 - c)/(a^
2*x^2)) - 3*sqrt(-c)*arctan(a^2*sqrt(-c)*x^2*sqrt((a^2*c*x^2 - c)/(a^2*x^2))/(a^2*c*x^2 - c)))/a^3]

________________________________________________________________________________________

giac [A]  time = 0.18, size = 116, normalized size = 0.94 \[ \frac {1}{6} \, {\left (2 \, \sqrt {a^{2} c x^{2} - c} {\left (x {\left (\frac {x \mathrm {sgn}\relax (x)}{a^{2}} + \frac {3 \, \mathrm {sgn}\relax (x)}{a^{3}}\right )} + \frac {5 \, \mathrm {sgn}\relax (x)}{a^{4}}\right )} - \frac {6 \, \sqrt {c} \log \left ({\left | -\sqrt {a^{2} c} x + \sqrt {a^{2} c x^{2} - c} \right |}\right ) \mathrm {sgn}\relax (x)}{a^{3} {\left | a \right |}} + \frac {{\left (3 \, a \sqrt {c} \log \left ({\left | c \right |}\right ) - 10 \, \sqrt {-c} {\left | a \right |}\right )} \mathrm {sgn}\relax (x)}{a^{4} {\left | a \right |}}\right )} {\left | a \right |} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x-1)*(a*x+1)*x^2*(c-c/a^2/x^2)^(1/2),x, algorithm="giac")

[Out]

1/6*(2*sqrt(a^2*c*x^2 - c)*(x*(x*sgn(x)/a^2 + 3*sgn(x)/a^3) + 5*sgn(x)/a^4) - 6*sqrt(c)*log(abs(-sqrt(a^2*c)*x
 + sqrt(a^2*c*x^2 - c)))*sgn(x)/(a^3*abs(a)) + (3*a*sqrt(c)*log(abs(c)) - 10*sqrt(-c)*abs(a))*sgn(x)/(a^4*abs(
a)))*abs(a)

________________________________________________________________________________________

maple [A]  time = 0.05, size = 174, normalized size = 1.41 \[ -\frac {\sqrt {\frac {c \left (a^{2} x^{2}-1\right )}{a^{2} x^{2}}}\, x \left (-\left (\frac {c \left (a^{2} x^{2}-1\right )}{a^{2}}\right )^{\frac {3}{2}} a^{3}-3 \sqrt {\frac {c \left (a^{2} x^{2}-1\right )}{a^{2}}}\, x \,a^{2} c +3 c^{\frac {3}{2}} \ln \left (x \sqrt {c}+\sqrt {\frac {c \left (a^{2} x^{2}-1\right )}{a^{2}}}\right )-6 c^{\frac {3}{2}} \ln \left (\frac {\sqrt {c}\, \sqrt {\frac {\left (a x -1\right ) \left (a x +1\right ) c}{a^{2}}}+c x}{\sqrt {c}}\right )-6 \sqrt {\frac {\left (a x -1\right ) \left (a x +1\right ) c}{a^{2}}}\, a c \right )}{3 \sqrt {\frac {c \left (a^{2} x^{2}-1\right )}{a^{2}}}\, a^{3} c} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)/(a*x-1)*x^2*(c-c/a^2/x^2)^(1/2),x)

[Out]

-1/3*(c*(a^2*x^2-1)/a^2/x^2)^(1/2)*x*(-(c*(a^2*x^2-1)/a^2)^(3/2)*a^3-3*(c*(a^2*x^2-1)/a^2)^(1/2)*x*a^2*c+3*c^(
3/2)*ln(x*c^(1/2)+(c*(a^2*x^2-1)/a^2)^(1/2))-6*c^(3/2)*ln((c^(1/2)*((a*x-1)*(a*x+1)*c/a^2)^(1/2)+c*x)/c^(1/2))
-6*((a*x-1)*(a*x+1)*c/a^2)^(1/2)*a*c)/(c*(a^2*x^2-1)/a^2)^(1/2)/a^3/c

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (a x + 1\right )} \sqrt {c - \frac {c}{a^{2} x^{2}}} x^{2}}{a x - 1}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x-1)*(a*x+1)*x^2*(c-c/a^2/x^2)^(1/2),x, algorithm="maxima")

[Out]

integrate((a*x + 1)*sqrt(c - c/(a^2*x^2))*x^2/(a*x - 1), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {x^2\,\sqrt {c-\frac {c}{a^2\,x^2}}\,\left (a\,x+1\right )}{a\,x-1} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2*(c - c/(a^2*x^2))^(1/2)*(a*x + 1))/(a*x - 1),x)

[Out]

int((x^2*(c - c/(a^2*x^2))^(1/2)*(a*x + 1))/(a*x - 1), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{2} \sqrt {- c \left (-1 + \frac {1}{a x}\right ) \left (1 + \frac {1}{a x}\right )} \left (a x + 1\right )}{a x - 1}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x-1)*(a*x+1)*x**2*(c-c/a**2/x**2)**(1/2),x)

[Out]

Integral(x**2*sqrt(-c*(-1 + 1/(a*x))*(1 + 1/(a*x)))*(a*x + 1)/(a*x - 1), x)

________________________________________________________________________________________