3.775 \(\int e^{\coth ^{-1}(a x)} (c-\frac {c}{a^2 x^2}) \, dx\)

Optimal. Leaf size=107 \[ c x \sqrt {1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/2}-\frac {2 c \sqrt {1-\frac {1}{a x}} \sqrt {\frac {1}{a x}+1}}{a}+\frac {c \csc ^{-1}(a x)}{a}+\frac {c \tanh ^{-1}\left (\sqrt {1-\frac {1}{a x}} \sqrt {\frac {1}{a x}+1}\right )}{a} \]

[Out]

c*arccsc(a*x)/a+c*arctanh((1-1/a/x)^(1/2)*(1+1/a/x)^(1/2))/a+c*(1+1/a/x)^(3/2)*x*(1-1/a/x)^(1/2)-2*c*(1-1/a/x)
^(1/2)*(1+1/a/x)^(1/2)/a

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 107, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {6194, 97, 154, 21, 105, 41, 216, 92, 208} \[ c x \sqrt {1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/2}-\frac {2 c \sqrt {1-\frac {1}{a x}} \sqrt {\frac {1}{a x}+1}}{a}+\frac {c \csc ^{-1}(a x)}{a}+\frac {c \tanh ^{-1}\left (\sqrt {1-\frac {1}{a x}} \sqrt {\frac {1}{a x}+1}\right )}{a} \]

Antiderivative was successfully verified.

[In]

Int[E^ArcCoth[a*x]*(c - c/(a^2*x^2)),x]

[Out]

(-2*c*Sqrt[1 - 1/(a*x)]*Sqrt[1 + 1/(a*x)])/a + c*Sqrt[1 - 1/(a*x)]*(1 + 1/(a*x))^(3/2)*x + (c*ArcCsc[a*x])/a +
 (c*ArcTanh[Sqrt[1 - 1/(a*x)]*Sqrt[1 + 1/(a*x)]])/a

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 41

Int[((a_) + (b_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(m_.), x_Symbol] :> Int[(a*c + b*d*x^2)^m, x] /; FreeQ[{a, b
, c, d, m}, x] && EqQ[b*c + a*d, 0] && (IntegerQ[m] || (GtQ[a, 0] && GtQ[c, 0]))

Rule 92

Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))), x_Symbol] :> Dist[b*f, Subst[I
nt[1/(d*(b*e - a*f)^2 + b*f^2*x^2), x], x, Sqrt[a + b*x]*Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d, e, f}, x] &&
 EqQ[2*b*d*e - f*(b*c + a*d), 0]

Rule 97

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p)/(b*(m + 1)), x] - Dist[1/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n
- 1)*(e + f*x)^(p - 1)*Simp[d*e*n + c*f*p + d*f*(n + p)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && LtQ[m
, -1] && GtQ[n, 0] && GtQ[p, 0] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p] || IntegersQ[p, m + n])

Rule 105

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> Dist[b/f, Int[(a
+ b*x)^(m - 1)*(c + d*x)^n, x], x] - Dist[(b*e - a*f)/f, Int[((a + b*x)^(m - 1)*(c + d*x)^n)/(e + f*x), x], x]
 /; FreeQ[{a, b, c, d, e, f, m, n}, x] && IGtQ[Simplify[m + n + 1], 0] && (GtQ[m, 0] || ( !RationalQ[m] && (Su
mSimplerQ[m, -1] ||  !SumSimplerQ[n, -1])))

Rule 154

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[(h*(a + b*x)^m*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d*f*(m + n + p + 2)), x] + Dist[1/(d*f*(m + n
 + p + 2)), Int[(a + b*x)^(m - 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*g*(m + n + p + 2) - h*(b*c*e*m + a*(d*e*(
n + 1) + c*f*(p + 1))) + (b*d*f*g*(m + n + p + 2) + h*(a*d*f*m - b*(d*e*(m + n + 1) + c*f*(m + p + 1))))*x, x]
, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && GtQ[m, 0] && NeQ[m + n + p + 2, 0] && IntegersQ[2*m, 2
*n, 2*p]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 6194

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_)^2)^(p_.), x_Symbol] :> -Dist[c^p, Subst[Int[((1 - x/a)^(p
 - n/2)*(1 + x/a)^(p + n/2))/x^2, x], x, 1/x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c + a^2*d, 0] &&  !Integ
erQ[n/2] && (IntegerQ[p] || GtQ[c, 0]) &&  !IntegersQ[2*p, p + n/2]

Rubi steps

\begin {align*} \int e^{\coth ^{-1}(a x)} \left (c-\frac {c}{a^2 x^2}\right ) \, dx &=-\left (c \operatorname {Subst}\left (\int \frac {\sqrt {1-\frac {x}{a}} \left (1+\frac {x}{a}\right )^{3/2}}{x^2} \, dx,x,\frac {1}{x}\right )\right )\\ &=c \sqrt {1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/2} x-c \operatorname {Subst}\left (\int \frac {\left (\frac {1}{a}-\frac {2 x}{a^2}\right ) \sqrt {1+\frac {x}{a}}}{x \sqrt {1-\frac {x}{a}}} \, dx,x,\frac {1}{x}\right )\\ &=-\frac {2 c \sqrt {1-\frac {1}{a x}} \sqrt {1+\frac {1}{a x}}}{a}+c \sqrt {1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/2} x+(a c) \operatorname {Subst}\left (\int \frac {-\frac {1}{a^2}+\frac {x}{a^3}}{x \sqrt {1-\frac {x}{a}} \sqrt {1+\frac {x}{a}}} \, dx,x,\frac {1}{x}\right )\\ &=-\frac {2 c \sqrt {1-\frac {1}{a x}} \sqrt {1+\frac {1}{a x}}}{a}+c \sqrt {1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/2} x-\frac {c \operatorname {Subst}\left (\int \frac {\sqrt {1-\frac {x}{a}}}{x \sqrt {1+\frac {x}{a}}} \, dx,x,\frac {1}{x}\right )}{a}\\ &=-\frac {2 c \sqrt {1-\frac {1}{a x}} \sqrt {1+\frac {1}{a x}}}{a}+c \sqrt {1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/2} x+\frac {c \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x}{a}} \sqrt {1+\frac {x}{a}}} \, dx,x,\frac {1}{x}\right )}{a^2}-\frac {c \operatorname {Subst}\left (\int \frac {1}{x \sqrt {1-\frac {x}{a}} \sqrt {1+\frac {x}{a}}} \, dx,x,\frac {1}{x}\right )}{a}\\ &=-\frac {2 c \sqrt {1-\frac {1}{a x}} \sqrt {1+\frac {1}{a x}}}{a}+c \sqrt {1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/2} x+\frac {c \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x^2}{a^2}}} \, dx,x,\frac {1}{x}\right )}{a^2}+\frac {c \operatorname {Subst}\left (\int \frac {1}{\frac {1}{a}-\frac {x^2}{a}} \, dx,x,\sqrt {1-\frac {1}{a x}} \sqrt {1+\frac {1}{a x}}\right )}{a^2}\\ &=-\frac {2 c \sqrt {1-\frac {1}{a x}} \sqrt {1+\frac {1}{a x}}}{a}+c \sqrt {1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/2} x+\frac {c \csc ^{-1}(a x)}{a}+\frac {c \tanh ^{-1}\left (\sqrt {1-\frac {1}{a x}} \sqrt {1+\frac {1}{a x}}\right )}{a}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.12, size = 53, normalized size = 0.50 \[ \frac {c \left (\sqrt {1-\frac {1}{a^2 x^2}} (a x-1)+\log \left (x \left (\sqrt {1-\frac {1}{a^2 x^2}}+1\right )\right )+\sin ^{-1}\left (\frac {1}{a x}\right )\right )}{a} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^ArcCoth[a*x]*(c - c/(a^2*x^2)),x]

[Out]

(c*(Sqrt[1 - 1/(a^2*x^2)]*(-1 + a*x) + ArcSin[1/(a*x)] + Log[(1 + Sqrt[1 - 1/(a^2*x^2)])*x]))/a

________________________________________________________________________________________

fricas [A]  time = 0.72, size = 104, normalized size = 0.97 \[ -\frac {2 \, a c x \arctan \left (\sqrt {\frac {a x - 1}{a x + 1}}\right ) - a c x \log \left (\sqrt {\frac {a x - 1}{a x + 1}} + 1\right ) + a c x \log \left (\sqrt {\frac {a x - 1}{a x + 1}} - 1\right ) - {\left (a^{2} c x^{2} - c\right )} \sqrt {\frac {a x - 1}{a x + 1}}}{a^{2} x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)*(c-c/a^2/x^2),x, algorithm="fricas")

[Out]

-(2*a*c*x*arctan(sqrt((a*x - 1)/(a*x + 1))) - a*c*x*log(sqrt((a*x - 1)/(a*x + 1)) + 1) + a*c*x*log(sqrt((a*x -
 1)/(a*x + 1)) - 1) - (a^2*c*x^2 - c)*sqrt((a*x - 1)/(a*x + 1)))/(a^2*x)

________________________________________________________________________________________

giac [A]  time = 0.15, size = 123, normalized size = 1.15 \[ -a c {\left (\frac {2 \, \arctan \left (\sqrt {\frac {a x - 1}{a x + 1}}\right )}{a^{2}} - \frac {\log \left (\sqrt {\frac {a x - 1}{a x + 1}} + 1\right )}{a^{2}} + \frac {\log \left ({\left | \sqrt {\frac {a x - 1}{a x + 1}} - 1 \right |}\right )}{a^{2}} + \frac {4 \, {\left (a x - 1\right )} \sqrt {\frac {a x - 1}{a x + 1}}}{{\left (a x + 1\right )} a^{2} {\left (\frac {{\left (a x - 1\right )}^{2}}{{\left (a x + 1\right )}^{2}} - 1\right )}}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)*(c-c/a^2/x^2),x, algorithm="giac")

[Out]

-a*c*(2*arctan(sqrt((a*x - 1)/(a*x + 1)))/a^2 - log(sqrt((a*x - 1)/(a*x + 1)) + 1)/a^2 + log(abs(sqrt((a*x - 1
)/(a*x + 1)) - 1))/a^2 + 4*(a*x - 1)*sqrt((a*x - 1)/(a*x + 1))/((a*x + 1)*a^2*((a*x - 1)^2/(a*x + 1)^2 - 1)))

________________________________________________________________________________________

maple [A]  time = 0.05, size = 163, normalized size = 1.52 \[ \frac {\left (a x -1\right ) c \left (-\sqrt {a^{2} x^{2}-1}\, \sqrt {a^{2}}\, x^{2} a^{2}+\left (a^{2} x^{2}-1\right )^{\frac {3}{2}} \sqrt {a^{2}}+\sqrt {a^{2} x^{2}-1}\, \sqrt {a^{2}}\, x a +a x \sqrt {a^{2}}\, \arctan \left (\frac {1}{\sqrt {a^{2} x^{2}-1}}\right )+\ln \left (\frac {a^{2} x +\sqrt {a^{2} x^{2}-1}\, \sqrt {a^{2}}}{\sqrt {a^{2}}}\right ) x \,a^{2}\right )}{\sqrt {\frac {a x -1}{a x +1}}\, \sqrt {\left (a x -1\right ) \left (a x +1\right )}\, a^{2} x \sqrt {a^{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a*x-1)/(a*x+1))^(1/2)*(c-c/a^2/x^2),x)

[Out]

(a*x-1)*c*(-(a^2*x^2-1)^(1/2)*(a^2)^(1/2)*x^2*a^2+(a^2*x^2-1)^(3/2)*(a^2)^(1/2)+(a^2*x^2-1)^(1/2)*(a^2)^(1/2)*
x*a+a*x*(a^2)^(1/2)*arctan(1/(a^2*x^2-1)^(1/2))+ln((a^2*x+(a^2*x^2-1)^(1/2)*(a^2)^(1/2))/(a^2)^(1/2))*x*a^2)/(
(a*x-1)/(a*x+1))^(1/2)/((a*x-1)*(a*x+1))^(1/2)/a^2/x/(a^2)^(1/2)

________________________________________________________________________________________

maxima [A]  time = 0.42, size = 117, normalized size = 1.09 \[ -{\left (\frac {4 \, c \left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{2}}}{\frac {{\left (a x - 1\right )}^{2} a^{2}}{{\left (a x + 1\right )}^{2}} - a^{2}} + \frac {2 \, c \arctan \left (\sqrt {\frac {a x - 1}{a x + 1}}\right )}{a^{2}} - \frac {c \log \left (\sqrt {\frac {a x - 1}{a x + 1}} + 1\right )}{a^{2}} + \frac {c \log \left (\sqrt {\frac {a x - 1}{a x + 1}} - 1\right )}{a^{2}}\right )} a \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)*(c-c/a^2/x^2),x, algorithm="maxima")

[Out]

-(4*c*((a*x - 1)/(a*x + 1))^(3/2)/((a*x - 1)^2*a^2/(a*x + 1)^2 - a^2) + 2*c*arctan(sqrt((a*x - 1)/(a*x + 1)))/
a^2 - c*log(sqrt((a*x - 1)/(a*x + 1)) + 1)/a^2 + c*log(sqrt((a*x - 1)/(a*x + 1)) - 1)/a^2)*a

________________________________________________________________________________________

mupad [B]  time = 0.07, size = 84, normalized size = 0.79 \[ \frac {2\,c\,\mathrm {atanh}\left (\sqrt {\frac {a\,x-1}{a\,x+1}}\right )}{a}-\frac {2\,c\,\mathrm {atan}\left (\sqrt {\frac {a\,x-1}{a\,x+1}}\right )}{a}+\frac {4\,c\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{3/2}}{a-\frac {a\,{\left (a\,x-1\right )}^2}{{\left (a\,x+1\right )}^2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c - c/(a^2*x^2))/((a*x - 1)/(a*x + 1))^(1/2),x)

[Out]

(2*c*atanh(((a*x - 1)/(a*x + 1))^(1/2)))/a - (2*c*atan(((a*x - 1)/(a*x + 1))^(1/2)))/a + (4*c*((a*x - 1)/(a*x
+ 1))^(3/2))/(a - (a*(a*x - 1)^2)/(a*x + 1)^2)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {c \left (\int \frac {a^{2}}{\sqrt {\frac {a x}{a x + 1} - \frac {1}{a x + 1}}}\, dx + \int \left (- \frac {1}{x^{2} \sqrt {\frac {a x}{a x + 1} - \frac {1}{a x + 1}}}\right )\, dx\right )}{a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))**(1/2)*(c-c/a**2/x**2),x)

[Out]

c*(Integral(a**2/sqrt(a*x/(a*x + 1) - 1/(a*x + 1)), x) + Integral(-1/(x**2*sqrt(a*x/(a*x + 1) - 1/(a*x + 1))),
 x))/a**2

________________________________________________________________________________________