3.73 \(\int \frac {e^{\frac {3}{2} \coth ^{-1}(a x)}}{x} \, dx\)

Optimal. Leaf size=291 \[ -\frac {\log \left (\frac {\sqrt {1-\frac {1}{a x}}}{\sqrt {\frac {1}{a x}+1}}-\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{\frac {1}{a x}+1}}+1\right )}{\sqrt {2}}+\frac {\log \left (\frac {\sqrt {1-\frac {1}{a x}}}{\sqrt {\frac {1}{a x}+1}}+\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{\frac {1}{a x}+1}}+1\right )}{\sqrt {2}}-\sqrt {2} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{\frac {1}{a x}+1}}\right )+\sqrt {2} \tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{\frac {1}{a x}+1}}+1\right )-2 \tan ^{-1}\left (\frac {\sqrt [4]{\frac {1}{a x}+1}}{\sqrt [4]{1-\frac {1}{a x}}}\right )+2 \tanh ^{-1}\left (\frac {\sqrt [4]{\frac {1}{a x}+1}}{\sqrt [4]{1-\frac {1}{a x}}}\right ) \]

[Out]

-2*arctan((1+1/a/x)^(1/4)/(1-1/a/x)^(1/4))+2*arctanh((1+1/a/x)^(1/4)/(1-1/a/x)^(1/4))-1/2*ln(1-(1-1/a/x)^(1/4)
*2^(1/2)/(1+1/a/x)^(1/4)+(1-1/a/x)^(1/2)/(1+1/a/x)^(1/2))*2^(1/2)+1/2*ln(1+(1-1/a/x)^(1/4)*2^(1/2)/(1+1/a/x)^(
1/4)+(1-1/a/x)^(1/2)/(1+1/a/x)^(1/2))*2^(1/2)+arctan(-1+(1-1/a/x)^(1/4)*2^(1/2)/(1+1/a/x)^(1/4))*2^(1/2)+arcta
n(1+(1-1/a/x)^(1/4)*2^(1/2)/(1+1/a/x)^(1/4))*2^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.23, antiderivative size = 291, normalized size of antiderivative = 1.00, number of steps used = 17, number of rules used = 14, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 1.000, Rules used = {6171, 105, 63, 240, 211, 1165, 628, 1162, 617, 204, 93, 298, 203, 206} \[ -\frac {\log \left (\frac {\sqrt {1-\frac {1}{a x}}}{\sqrt {\frac {1}{a x}+1}}-\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{\frac {1}{a x}+1}}+1\right )}{\sqrt {2}}+\frac {\log \left (\frac {\sqrt {1-\frac {1}{a x}}}{\sqrt {\frac {1}{a x}+1}}+\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{\frac {1}{a x}+1}}+1\right )}{\sqrt {2}}-\sqrt {2} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{\frac {1}{a x}+1}}\right )+\sqrt {2} \tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{\frac {1}{a x}+1}}+1\right )-2 \tan ^{-1}\left (\frac {\sqrt [4]{\frac {1}{a x}+1}}{\sqrt [4]{1-\frac {1}{a x}}}\right )+2 \tanh ^{-1}\left (\frac {\sqrt [4]{\frac {1}{a x}+1}}{\sqrt [4]{1-\frac {1}{a x}}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[E^((3*ArcCoth[a*x])/2)/x,x]

[Out]

-(Sqrt[2]*ArcTan[1 - (Sqrt[2]*(1 - 1/(a*x))^(1/4))/(1 + 1/(a*x))^(1/4)]) + Sqrt[2]*ArcTan[1 + (Sqrt[2]*(1 - 1/
(a*x))^(1/4))/(1 + 1/(a*x))^(1/4)] - 2*ArcTan[(1 + 1/(a*x))^(1/4)/(1 - 1/(a*x))^(1/4)] + 2*ArcTanh[(1 + 1/(a*x
))^(1/4)/(1 - 1/(a*x))^(1/4)] - Log[1 + Sqrt[1 - 1/(a*x)]/Sqrt[1 + 1/(a*x)] - (Sqrt[2]*(1 - 1/(a*x))^(1/4))/(1
 + 1/(a*x))^(1/4)]/Sqrt[2] + Log[1 + Sqrt[1 - 1/(a*x)]/Sqrt[1 + 1/(a*x)] + (Sqrt[2]*(1 - 1/(a*x))^(1/4))/(1 +
1/(a*x))^(1/4)]/Sqrt[2]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 105

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> Dist[b/f, Int[(a
+ b*x)^(m - 1)*(c + d*x)^n, x], x] - Dist[(b*e - a*f)/f, Int[((a + b*x)^(m - 1)*(c + d*x)^n)/(e + f*x), x], x]
 /; FreeQ[{a, b, c, d, e, f, m, n}, x] && IGtQ[Simplify[m + n + 1], 0] && (GtQ[m, 0] || ( !RationalQ[m] && (Su
mSimplerQ[m, -1] ||  !SumSimplerQ[n, -1])))

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 240

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^(p + 1/n), Subst[Int[1/(1 - b*x^n)^(p + 1/n + 1), x], x
, x/(a + b*x^n)^(1/n)], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[p, -2^(-1)] && IntegerQ[p
 + 1/n]

Rule 298

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b),
2]]}, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &
&  !GtQ[a/b, 0]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 6171

Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(x_)^(m_.), x_Symbol] :> -Subst[Int[(1 + x/a)^(n/2)/(x^(m + 2)*(1 - x/a)^(n/2
)), x], x, 1/x] /; FreeQ[{a, n}, x] &&  !IntegerQ[n] && IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {e^{\frac {3}{2} \coth ^{-1}(a x)}}{x} \, dx &=-\operatorname {Subst}\left (\int \frac {\left (1+\frac {x}{a}\right )^{3/4}}{x \left (1-\frac {x}{a}\right )^{3/4}} \, dx,x,\frac {1}{x}\right )\\ &=-\frac {\operatorname {Subst}\left (\int \frac {1}{\left (1-\frac {x}{a}\right )^{3/4} \sqrt [4]{1+\frac {x}{a}}} \, dx,x,\frac {1}{x}\right )}{a}-\operatorname {Subst}\left (\int \frac {1}{x \left (1-\frac {x}{a}\right )^{3/4} \sqrt [4]{1+\frac {x}{a}}} \, dx,x,\frac {1}{x}\right )\\ &=4 \operatorname {Subst}\left (\int \frac {1}{\sqrt [4]{2-x^4}} \, dx,x,\sqrt [4]{1-\frac {1}{a x}}\right )-4 \operatorname {Subst}\left (\int \frac {x^2}{-1+x^4} \, dx,x,\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )\\ &=2 \operatorname {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )-2 \operatorname {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )+4 \operatorname {Subst}\left (\int \frac {1}{1+x^4} \, dx,x,\frac {\sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{1+\frac {1}{a x}}}\right )\\ &=-2 \tan ^{-1}\left (\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )+2 \tanh ^{-1}\left (\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )+2 \operatorname {Subst}\left (\int \frac {1-x^2}{1+x^4} \, dx,x,\frac {\sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{1+\frac {1}{a x}}}\right )+2 \operatorname {Subst}\left (\int \frac {1+x^2}{1+x^4} \, dx,x,\frac {\sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{1+\frac {1}{a x}}}\right )\\ &=-2 \tan ^{-1}\left (\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )+2 \tanh ^{-1}\left (\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )-\frac {\operatorname {Subst}\left (\int \frac {\sqrt {2}+2 x}{-1-\sqrt {2} x-x^2} \, dx,x,\frac {\sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{1+\frac {1}{a x}}}\right )}{\sqrt {2}}-\frac {\operatorname {Subst}\left (\int \frac {\sqrt {2}-2 x}{-1+\sqrt {2} x-x^2} \, dx,x,\frac {\sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{1+\frac {1}{a x}}}\right )}{\sqrt {2}}+\operatorname {Subst}\left (\int \frac {1}{1-\sqrt {2} x+x^2} \, dx,x,\frac {\sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{1+\frac {1}{a x}}}\right )+\operatorname {Subst}\left (\int \frac {1}{1+\sqrt {2} x+x^2} \, dx,x,\frac {\sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{1+\frac {1}{a x}}}\right )\\ &=-2 \tan ^{-1}\left (\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )+2 \tanh ^{-1}\left (\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )-\frac {\log \left (1+\frac {\sqrt {1-\frac {1}{a x}}}{\sqrt {1+\frac {1}{a x}}}-\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{1+\frac {1}{a x}}}\right )}{\sqrt {2}}+\frac {\log \left (1+\frac {\sqrt {1-\frac {1}{a x}}}{\sqrt {1+\frac {1}{a x}}}+\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{1+\frac {1}{a x}}}\right )}{\sqrt {2}}+\sqrt {2} \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{1+\frac {1}{a x}}}\right )-\sqrt {2} \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{1+\frac {1}{a x}}}\right )\\ &=-\sqrt {2} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{1+\frac {1}{a x}}}\right )+\sqrt {2} \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{1+\frac {1}{a x}}}\right )-2 \tan ^{-1}\left (\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )+2 \tanh ^{-1}\left (\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )-\frac {\log \left (1+\frac {\sqrt {1-\frac {1}{a x}}}{\sqrt {1+\frac {1}{a x}}}-\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{1+\frac {1}{a x}}}\right )}{\sqrt {2}}+\frac {\log \left (1+\frac {\sqrt {1-\frac {1}{a x}}}{\sqrt {1+\frac {1}{a x}}}+\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{1+\frac {1}{a x}}}\right )}{\sqrt {2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.05, size = 30, normalized size = 0.10 \[ \frac {8}{7} e^{\frac {7}{2} \coth ^{-1}(a x)} \, _2F_1\left (\frac {7}{8},1;\frac {15}{8};e^{4 \coth ^{-1}(a x)}\right ) \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^((3*ArcCoth[a*x])/2)/x,x]

[Out]

(8*E^((7*ArcCoth[a*x])/2)*Hypergeometric2F1[7/8, 1, 15/8, E^(4*ArcCoth[a*x])])/7

________________________________________________________________________________________

fricas [A]  time = 0.56, size = 291, normalized size = 1.00 \[ -2 \, \sqrt {2} \arctan \left (\sqrt {2} \sqrt {\sqrt {2} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + \sqrt {\frac {a x - 1}{a x + 1}} + 1} - \sqrt {2} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} - 1\right ) - 2 \, \sqrt {2} \arctan \left (\frac {1}{2} \, \sqrt {2} \sqrt {-4 \, \sqrt {2} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + 4 \, \sqrt {\frac {a x - 1}{a x + 1}} + 4} - \sqrt {2} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + 1\right ) + \frac {1}{2} \, \sqrt {2} \log \left (4 \, \sqrt {2} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + 4 \, \sqrt {\frac {a x - 1}{a x + 1}} + 4\right ) - \frac {1}{2} \, \sqrt {2} \log \left (-4 \, \sqrt {2} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + 4 \, \sqrt {\frac {a x - 1}{a x + 1}} + 4\right ) + 2 \, \arctan \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right ) + \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + 1\right ) - \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} - 1\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/4)/x,x, algorithm="fricas")

[Out]

-2*sqrt(2)*arctan(sqrt(2)*sqrt(sqrt(2)*((a*x - 1)/(a*x + 1))^(1/4) + sqrt((a*x - 1)/(a*x + 1)) + 1) - sqrt(2)*
((a*x - 1)/(a*x + 1))^(1/4) - 1) - 2*sqrt(2)*arctan(1/2*sqrt(2)*sqrt(-4*sqrt(2)*((a*x - 1)/(a*x + 1))^(1/4) +
4*sqrt((a*x - 1)/(a*x + 1)) + 4) - sqrt(2)*((a*x - 1)/(a*x + 1))^(1/4) + 1) + 1/2*sqrt(2)*log(4*sqrt(2)*((a*x
- 1)/(a*x + 1))^(1/4) + 4*sqrt((a*x - 1)/(a*x + 1)) + 4) - 1/2*sqrt(2)*log(-4*sqrt(2)*((a*x - 1)/(a*x + 1))^(1
/4) + 4*sqrt((a*x - 1)/(a*x + 1)) + 4) + 2*arctan(((a*x - 1)/(a*x + 1))^(1/4)) + log(((a*x - 1)/(a*x + 1))^(1/
4) + 1) - log(((a*x - 1)/(a*x + 1))^(1/4) - 1)

________________________________________________________________________________________

giac [A]  time = 0.25, size = 232, normalized size = 0.80 \[ \frac {1}{2} \, a {\left (\frac {2 \, \sqrt {2} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right )}\right )}{a} + \frac {2 \, \sqrt {2} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right )}\right )}{a} + \frac {\sqrt {2} \log \left (\sqrt {2} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + \sqrt {\frac {a x - 1}{a x + 1}} + 1\right )}{a} - \frac {\sqrt {2} \log \left (-\sqrt {2} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + \sqrt {\frac {a x - 1}{a x + 1}} + 1\right )}{a} + \frac {4 \, \arctan \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right )}{a} + \frac {2 \, \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + 1\right )}{a} - \frac {2 \, \log \left ({\left | \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} - 1 \right |}\right )}{a}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/4)/x,x, algorithm="giac")

[Out]

1/2*a*(2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*((a*x - 1)/(a*x + 1))^(1/4)))/a + 2*sqrt(2)*arctan(-1/2*sqrt(
2)*(sqrt(2) - 2*((a*x - 1)/(a*x + 1))^(1/4)))/a + sqrt(2)*log(sqrt(2)*((a*x - 1)/(a*x + 1))^(1/4) + sqrt((a*x
- 1)/(a*x + 1)) + 1)/a - sqrt(2)*log(-sqrt(2)*((a*x - 1)/(a*x + 1))^(1/4) + sqrt((a*x - 1)/(a*x + 1)) + 1)/a +
 4*arctan(((a*x - 1)/(a*x + 1))^(1/4))/a + 2*log(((a*x - 1)/(a*x + 1))^(1/4) + 1)/a - 2*log(abs(((a*x - 1)/(a*
x + 1))^(1/4) - 1))/a)

________________________________________________________________________________________

maple [F]  time = 0.08, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (\frac {a x -1}{a x +1}\right )^{\frac {3}{4}} x}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a*x-1)/(a*x+1))^(3/4)/x,x)

[Out]

int(1/((a*x-1)/(a*x+1))^(3/4)/x,x)

________________________________________________________________________________________

maxima [A]  time = 0.40, size = 224, normalized size = 0.77 \[ \frac {1}{2} \, a {\left (\frac {2 \, \sqrt {2} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right )}\right ) + 2 \, \sqrt {2} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right )}\right ) + \sqrt {2} \log \left (\sqrt {2} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + \sqrt {\frac {a x - 1}{a x + 1}} + 1\right ) - \sqrt {2} \log \left (-\sqrt {2} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + \sqrt {\frac {a x - 1}{a x + 1}} + 1\right )}{a} + \frac {4 \, \arctan \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right )}{a} + \frac {2 \, \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + 1\right )}{a} - \frac {2 \, \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} - 1\right )}{a}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/4)/x,x, algorithm="maxima")

[Out]

1/2*a*((2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*((a*x - 1)/(a*x + 1))^(1/4))) + 2*sqrt(2)*arctan(-1/2*sqrt(2
)*(sqrt(2) - 2*((a*x - 1)/(a*x + 1))^(1/4))) + sqrt(2)*log(sqrt(2)*((a*x - 1)/(a*x + 1))^(1/4) + sqrt((a*x - 1
)/(a*x + 1)) + 1) - sqrt(2)*log(-sqrt(2)*((a*x - 1)/(a*x + 1))^(1/4) + sqrt((a*x - 1)/(a*x + 1)) + 1))/a + 4*a
rctan(((a*x - 1)/(a*x + 1))^(1/4))/a + 2*log(((a*x - 1)/(a*x + 1))^(1/4) + 1)/a - 2*log(((a*x - 1)/(a*x + 1))^
(1/4) - 1)/a)

________________________________________________________________________________________

mupad [B]  time = 0.05, size = 101, normalized size = 0.35 \[ 2\,\mathrm {atan}\left ({\left (\frac {a\,x-1}{a\,x+1}\right )}^{1/4}\right )-\mathrm {atan}\left ({\left (\frac {a\,x-1}{a\,x+1}\right )}^{1/4}\,1{}\mathrm {i}\right )\,2{}\mathrm {i}+\sqrt {2}\,\mathrm {atan}\left (\sqrt {2}\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{1/4}\,\left (\frac {1}{2}-\frac {1}{2}{}\mathrm {i}\right )\right )\,\left (1+1{}\mathrm {i}\right )+\sqrt {2}\,\mathrm {atan}\left (\sqrt {2}\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{1/4}\,\left (\frac {1}{2}+\frac {1}{2}{}\mathrm {i}\right )\right )\,\left (1-\mathrm {i}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x*((a*x - 1)/(a*x + 1))^(3/4)),x)

[Out]

2*atan(((a*x - 1)/(a*x + 1))^(1/4)) - atan(((a*x - 1)/(a*x + 1))^(1/4)*1i)*2i + 2^(1/2)*atan(2^(1/2)*((a*x - 1
)/(a*x + 1))^(1/4)*(1/2 - 1i/2))*(1 + 1i) + 2^(1/2)*atan(2^(1/2)*((a*x - 1)/(a*x + 1))^(1/4)*(1/2 + 1i/2))*(1
- 1i)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{x \left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{4}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))**(3/4)/x,x)

[Out]

Integral(1/(x*((a*x - 1)/(a*x + 1))**(3/4)), x)

________________________________________________________________________________________