3.724 \(\int e^{-3 \coth ^{-1}(a x)} \sqrt {c-a^2 c x^2} \, dx\)

Optimal. Leaf size=112 \[ \frac {x \sqrt {c-a^2 c x^2}}{2 \sqrt {1-\frac {1}{a^2 x^2}}}-\frac {3 \sqrt {c-a^2 c x^2}}{a \sqrt {1-\frac {1}{a^2 x^2}}}+\frac {4 \sqrt {c-a^2 c x^2} \log (a x+1)}{a^2 x \sqrt {1-\frac {1}{a^2 x^2}}} \]

[Out]

-3*(-a^2*c*x^2+c)^(1/2)/a/(1-1/a^2/x^2)^(1/2)+1/2*x*(-a^2*c*x^2+c)^(1/2)/(1-1/a^2/x^2)^(1/2)+4*ln(a*x+1)*(-a^2
*c*x^2+c)^(1/2)/a^2/x/(1-1/a^2/x^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.13, antiderivative size = 112, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {6192, 6193, 43} \[ \frac {x \sqrt {c-a^2 c x^2}}{2 \sqrt {1-\frac {1}{a^2 x^2}}}-\frac {3 \sqrt {c-a^2 c x^2}}{a \sqrt {1-\frac {1}{a^2 x^2}}}+\frac {4 \sqrt {c-a^2 c x^2} \log (a x+1)}{a^2 x \sqrt {1-\frac {1}{a^2 x^2}}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[c - a^2*c*x^2]/E^(3*ArcCoth[a*x]),x]

[Out]

(-3*Sqrt[c - a^2*c*x^2])/(a*Sqrt[1 - 1/(a^2*x^2)]) + (x*Sqrt[c - a^2*c*x^2])/(2*Sqrt[1 - 1/(a^2*x^2)]) + (4*Sq
rt[c - a^2*c*x^2]*Log[1 + a*x])/(a^2*Sqrt[1 - 1/(a^2*x^2)]*x)

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 6192

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(c + d*x^2)^p/(x^(2*p)*(
1 - 1/(a^2*x^2))^p), Int[u*x^(2*p)*(1 - 1/(a^2*x^2))^p*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x]
 && EqQ[a^2*c + d, 0] &&  !IntegerQ[n/2] &&  !IntegerQ[p]

Rule 6193

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_.), x_Symbol] :> Dist[c^p/a^(2*p), Int[(u*(-1
 + a*x)^(p - n/2)*(1 + a*x)^(p + n/2))/x^(2*p), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c + a^2*d, 0] &&  !
IntegerQ[n/2] && (IntegerQ[p] || GtQ[c, 0]) && IntegersQ[2*p, p + n/2]

Rubi steps

\begin {align*} \int e^{-3 \coth ^{-1}(a x)} \sqrt {c-a^2 c x^2} \, dx &=\frac {\sqrt {c-a^2 c x^2} \int e^{-3 \coth ^{-1}(a x)} \sqrt {1-\frac {1}{a^2 x^2}} x \, dx}{\sqrt {1-\frac {1}{a^2 x^2}} x}\\ &=\frac {\sqrt {c-a^2 c x^2} \int \frac {(-1+a x)^2}{1+a x} \, dx}{a \sqrt {1-\frac {1}{a^2 x^2}} x}\\ &=\frac {\sqrt {c-a^2 c x^2} \int \left (-3+a x+\frac {4}{1+a x}\right ) \, dx}{a \sqrt {1-\frac {1}{a^2 x^2}} x}\\ &=-\frac {3 \sqrt {c-a^2 c x^2}}{a \sqrt {1-\frac {1}{a^2 x^2}}}+\frac {x \sqrt {c-a^2 c x^2}}{2 \sqrt {1-\frac {1}{a^2 x^2}}}+\frac {4 \sqrt {c-a^2 c x^2} \log (1+a x)}{a^2 \sqrt {1-\frac {1}{a^2 x^2}} x}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 56, normalized size = 0.50 \[ \frac {\sqrt {c-a^2 c x^2} (a x (a x-6)+8 \log (a x+1))}{2 a^2 x \sqrt {1-\frac {1}{a^2 x^2}}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[c - a^2*c*x^2]/E^(3*ArcCoth[a*x]),x]

[Out]

(Sqrt[c - a^2*c*x^2]*(a*x*(-6 + a*x) + 8*Log[1 + a*x]))/(2*a^2*Sqrt[1 - 1/(a^2*x^2)]*x)

________________________________________________________________________________________

fricas [A]  time = 0.57, size = 33, normalized size = 0.29 \[ \frac {{\left (a^{2} x^{2} - 6 \, a x + 8 \, \log \left (a x + 1\right )\right )} \sqrt {-a^{2} c}}{2 \, a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a^2*c*x^2+c)^(1/2)*((a*x-1)/(a*x+1))^(3/2),x, algorithm="fricas")

[Out]

1/2*(a^2*x^2 - 6*a*x + 8*log(a*x + 1))*sqrt(-a^2*c)/a^2

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {-a^{2} c x^{2} + c} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a^2*c*x^2+c)^(1/2)*((a*x-1)/(a*x+1))^(3/2),x, algorithm="giac")

[Out]

integrate(sqrt(-a^2*c*x^2 + c)*((a*x - 1)/(a*x + 1))^(3/2), x)

________________________________________________________________________________________

maple [A]  time = 0.05, size = 67, normalized size = 0.60 \[ \frac {\left (a^{2} x^{2}-6 a x +8 \ln \left (a x +1\right )\right ) \sqrt {-c \left (a^{2} x^{2}-1\right )}\, \left (a x +1\right ) \left (\frac {a x -1}{a x +1}\right )^{\frac {3}{2}}}{2 a \left (a x -1\right )^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-a^2*c*x^2+c)^(1/2)*((a*x-1)/(a*x+1))^(3/2),x)

[Out]

1/2*(a^2*x^2-6*a*x+8*ln(a*x+1))*(-c*(a^2*x^2-1))^(1/2)*(a*x+1)*((a*x-1)/(a*x+1))^(3/2)/a/(a*x-1)^2

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {-a^{2} c x^{2} + c} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a^2*c*x^2+c)^(1/2)*((a*x-1)/(a*x+1))^(3/2),x, algorithm="maxima")

[Out]

integrate(sqrt(-a^2*c*x^2 + c)*((a*x - 1)/(a*x + 1))^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \sqrt {c-a^2\,c\,x^2}\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{3/2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c - a^2*c*x^2)^(1/2)*((a*x - 1)/(a*x + 1))^(3/2),x)

[Out]

int((c - a^2*c*x^2)^(1/2)*((a*x - 1)/(a*x + 1))^(3/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a**2*c*x**2+c)**(1/2)*((a*x-1)/(a*x+1))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________