3.671 \(\int \frac {e^{\coth ^{-1}(a x)} \sqrt {c-a^2 c x^2}}{x} \, dx\)

Optimal. Leaf size=69 \[ \frac {\sqrt {c-a^2 c x^2}}{\sqrt {1-\frac {1}{a^2 x^2}}}+\frac {\log (x) \sqrt {c-a^2 c x^2}}{a x \sqrt {1-\frac {1}{a^2 x^2}}} \]

[Out]

(-a^2*c*x^2+c)^(1/2)/(1-1/a^2/x^2)^(1/2)+ln(x)*(-a^2*c*x^2+c)^(1/2)/a/x/(1-1/a^2/x^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.14, antiderivative size = 69, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {6192, 6193, 43} \[ \frac {\sqrt {c-a^2 c x^2}}{\sqrt {1-\frac {1}{a^2 x^2}}}+\frac {\log (x) \sqrt {c-a^2 c x^2}}{a x \sqrt {1-\frac {1}{a^2 x^2}}} \]

Antiderivative was successfully verified.

[In]

Int[(E^ArcCoth[a*x]*Sqrt[c - a^2*c*x^2])/x,x]

[Out]

Sqrt[c - a^2*c*x^2]/Sqrt[1 - 1/(a^2*x^2)] + (Sqrt[c - a^2*c*x^2]*Log[x])/(a*Sqrt[1 - 1/(a^2*x^2)]*x)

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 6192

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(c + d*x^2)^p/(x^(2*p)*(
1 - 1/(a^2*x^2))^p), Int[u*x^(2*p)*(1 - 1/(a^2*x^2))^p*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x]
 && EqQ[a^2*c + d, 0] &&  !IntegerQ[n/2] &&  !IntegerQ[p]

Rule 6193

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_.), x_Symbol] :> Dist[c^p/a^(2*p), Int[(u*(-1
 + a*x)^(p - n/2)*(1 + a*x)^(p + n/2))/x^(2*p), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c + a^2*d, 0] &&  !
IntegerQ[n/2] && (IntegerQ[p] || GtQ[c, 0]) && IntegersQ[2*p, p + n/2]

Rubi steps

\begin {align*} \int \frac {e^{\coth ^{-1}(a x)} \sqrt {c-a^2 c x^2}}{x} \, dx &=\frac {\sqrt {c-a^2 c x^2} \int e^{\coth ^{-1}(a x)} \sqrt {1-\frac {1}{a^2 x^2}} \, dx}{\sqrt {1-\frac {1}{a^2 x^2}} x}\\ &=\frac {\sqrt {c-a^2 c x^2} \int \frac {1+a x}{x} \, dx}{a \sqrt {1-\frac {1}{a^2 x^2}} x}\\ &=\frac {\sqrt {c-a^2 c x^2} \int \left (a+\frac {1}{x}\right ) \, dx}{a \sqrt {1-\frac {1}{a^2 x^2}} x}\\ &=\frac {\sqrt {c-a^2 c x^2}}{\sqrt {1-\frac {1}{a^2 x^2}}}+\frac {\sqrt {c-a^2 c x^2} \log (x)}{a \sqrt {1-\frac {1}{a^2 x^2}} x}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 42, normalized size = 0.61 \[ \frac {\sqrt {c-a^2 c x^2} (a x+\log (x))}{a x \sqrt {1-\frac {1}{a^2 x^2}}} \]

Antiderivative was successfully verified.

[In]

Integrate[(E^ArcCoth[a*x]*Sqrt[c - a^2*c*x^2])/x,x]

[Out]

(Sqrt[c - a^2*c*x^2]*(a*x + Log[x]))/(a*Sqrt[1 - 1/(a^2*x^2)]*x)

________________________________________________________________________________________

fricas [A]  time = 0.52, size = 18, normalized size = 0.26 \[ \frac {\sqrt {-a^{2} c} {\left (a x + \log \relax (x)\right )}}{a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)*(-a^2*c*x^2+c)^(1/2)/x,x, algorithm="fricas")

[Out]

sqrt(-a^2*c)*(a*x + log(x))/a

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {-a^{2} c x^{2} + c}}{x \sqrt {\frac {a x - 1}{a x + 1}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)*(-a^2*c*x^2+c)^(1/2)/x,x, algorithm="giac")

[Out]

integrate(sqrt(-a^2*c*x^2 + c)/(x*sqrt((a*x - 1)/(a*x + 1))), x)

________________________________________________________________________________________

maple [A]  time = 0.06, size = 44, normalized size = 0.64 \[ \frac {\left (a x +\ln \relax (x )\right ) \sqrt {-c \left (a^{2} x^{2}-1\right )}}{\left (a x +1\right ) \sqrt {\frac {a x -1}{a x +1}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a*x-1)/(a*x+1))^(1/2)*(-a^2*c*x^2+c)^(1/2)/x,x)

[Out]

(a*x+ln(x))*(-c*(a^2*x^2-1))^(1/2)/(a*x+1)/((a*x-1)/(a*x+1))^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {-a^{2} c x^{2} + c}}{x \sqrt {\frac {a x - 1}{a x + 1}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)*(-a^2*c*x^2+c)^(1/2)/x,x, algorithm="maxima")

[Out]

integrate(sqrt(-a^2*c*x^2 + c)/(x*sqrt((a*x - 1)/(a*x + 1))), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\sqrt {c-a^2\,c\,x^2}}{x\,\sqrt {\frac {a\,x-1}{a\,x+1}}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c - a^2*c*x^2)^(1/2)/(x*((a*x - 1)/(a*x + 1))^(1/2)),x)

[Out]

int((c - a^2*c*x^2)^(1/2)/(x*((a*x - 1)/(a*x + 1))^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {- c \left (a x - 1\right ) \left (a x + 1\right )}}{x \sqrt {\frac {a x - 1}{a x + 1}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))**(1/2)*(-a**2*c*x**2+c)**(1/2)/x,x)

[Out]

Integral(sqrt(-c*(a*x - 1)*(a*x + 1))/(x*sqrt((a*x - 1)/(a*x + 1))), x)

________________________________________________________________________________________