3.635 \(\int e^{3 \coth ^{-1}(a x)} (c-a^2 c x^2)^{5/2} \, dx\)

Optimal. Leaf size=93 \[ \frac {(a x+1)^6 \left (c-a^2 c x^2\right )^{5/2}}{6 a^6 x^5 \left (1-\frac {1}{a^2 x^2}\right )^{5/2}}-\frac {2 (a x+1)^5 \left (c-a^2 c x^2\right )^{5/2}}{5 a^6 x^5 \left (1-\frac {1}{a^2 x^2}\right )^{5/2}} \]

[Out]

-2/5*(a*x+1)^5*(-a^2*c*x^2+c)^(5/2)/a^6/(1-1/a^2/x^2)^(5/2)/x^5+1/6*(a*x+1)^6*(-a^2*c*x^2+c)^(5/2)/a^6/(1-1/a^
2/x^2)^(5/2)/x^5

________________________________________________________________________________________

Rubi [A]  time = 0.18, antiderivative size = 93, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {6192, 6193, 43} \[ \frac {(a x+1)^6 \left (c-a^2 c x^2\right )^{5/2}}{6 a^6 x^5 \left (1-\frac {1}{a^2 x^2}\right )^{5/2}}-\frac {2 (a x+1)^5 \left (c-a^2 c x^2\right )^{5/2}}{5 a^6 x^5 \left (1-\frac {1}{a^2 x^2}\right )^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[E^(3*ArcCoth[a*x])*(c - a^2*c*x^2)^(5/2),x]

[Out]

(-2*(1 + a*x)^5*(c - a^2*c*x^2)^(5/2))/(5*a^6*(1 - 1/(a^2*x^2))^(5/2)*x^5) + ((1 + a*x)^6*(c - a^2*c*x^2)^(5/2
))/(6*a^6*(1 - 1/(a^2*x^2))^(5/2)*x^5)

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 6192

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(c + d*x^2)^p/(x^(2*p)*(
1 - 1/(a^2*x^2))^p), Int[u*x^(2*p)*(1 - 1/(a^2*x^2))^p*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x]
 && EqQ[a^2*c + d, 0] &&  !IntegerQ[n/2] &&  !IntegerQ[p]

Rule 6193

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_.), x_Symbol] :> Dist[c^p/a^(2*p), Int[(u*(-1
 + a*x)^(p - n/2)*(1 + a*x)^(p + n/2))/x^(2*p), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c + a^2*d, 0] &&  !
IntegerQ[n/2] && (IntegerQ[p] || GtQ[c, 0]) && IntegersQ[2*p, p + n/2]

Rubi steps

\begin {align*} \int e^{3 \coth ^{-1}(a x)} \left (c-a^2 c x^2\right )^{5/2} \, dx &=\frac {\left (c-a^2 c x^2\right )^{5/2} \int e^{3 \coth ^{-1}(a x)} \left (1-\frac {1}{a^2 x^2}\right )^{5/2} x^5 \, dx}{\left (1-\frac {1}{a^2 x^2}\right )^{5/2} x^5}\\ &=\frac {\left (c-a^2 c x^2\right )^{5/2} \int (-1+a x) (1+a x)^4 \, dx}{a^5 \left (1-\frac {1}{a^2 x^2}\right )^{5/2} x^5}\\ &=\frac {\left (c-a^2 c x^2\right )^{5/2} \int \left (-2 (1+a x)^4+(1+a x)^5\right ) \, dx}{a^5 \left (1-\frac {1}{a^2 x^2}\right )^{5/2} x^5}\\ &=-\frac {2 (1+a x)^5 \left (c-a^2 c x^2\right )^{5/2}}{5 a^6 \left (1-\frac {1}{a^2 x^2}\right )^{5/2} x^5}+\frac {(1+a x)^6 \left (c-a^2 c x^2\right )^{5/2}}{6 a^6 \left (1-\frac {1}{a^2 x^2}\right )^{5/2} x^5}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 55, normalized size = 0.59 \[ \frac {c^2 (a x+1)^5 (5 a x-7) \sqrt {c-a^2 c x^2}}{30 a^2 x \sqrt {1-\frac {1}{a^2 x^2}}} \]

Antiderivative was successfully verified.

[In]

Integrate[E^(3*ArcCoth[a*x])*(c - a^2*c*x^2)^(5/2),x]

[Out]

(c^2*(1 + a*x)^5*(-7 + 5*a*x)*Sqrt[c - a^2*c*x^2])/(30*a^2*Sqrt[1 - 1/(a^2*x^2)]*x)

________________________________________________________________________________________

fricas [A]  time = 0.55, size = 73, normalized size = 0.78 \[ \frac {{\left (5 \, a^{5} c^{2} x^{6} + 18 \, a^{4} c^{2} x^{5} + 15 \, a^{3} c^{2} x^{4} - 20 \, a^{2} c^{2} x^{3} - 45 \, a c^{2} x^{2} - 30 \, c^{2} x\right )} \sqrt {-a^{2} c}}{30 \, a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(-a^2*c*x^2+c)^(5/2),x, algorithm="fricas")

[Out]

1/30*(5*a^5*c^2*x^6 + 18*a^4*c^2*x^5 + 15*a^3*c^2*x^4 - 20*a^2*c^2*x^3 - 45*a*c^2*x^2 - 30*c^2*x)*sqrt(-a^2*c)
/a

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (-a^{2} c x^{2} + c\right )}^{\frac {5}{2}}}{\left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(-a^2*c*x^2+c)^(5/2),x, algorithm="giac")

[Out]

integrate((-a^2*c*x^2 + c)^(5/2)/((a*x - 1)/(a*x + 1))^(3/2), x)

________________________________________________________________________________________

maple [A]  time = 0.04, size = 84, normalized size = 0.90 \[ \frac {x \left (5 x^{5} a^{5}+18 x^{4} a^{4}+15 x^{3} a^{3}-20 a^{2} x^{2}-45 a x -30\right ) \left (-a^{2} c \,x^{2}+c \right )^{\frac {5}{2}}}{30 \left (a x -1\right ) \left (a x +1\right )^{4} \left (\frac {a x -1}{a x +1}\right )^{\frac {3}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a*x-1)/(a*x+1))^(3/2)*(-a^2*c*x^2+c)^(5/2),x)

[Out]

1/30*x*(5*a^5*x^5+18*a^4*x^4+15*a^3*x^3-20*a^2*x^2-45*a*x-30)*(-a^2*c*x^2+c)^(5/2)/(a*x-1)/(a*x+1)^4/((a*x-1)/
(a*x+1))^(3/2)

________________________________________________________________________________________

maxima [A]  time = 0.34, size = 140, normalized size = 1.51 \[ \frac {{\left (5 \, a^{7} \sqrt {-c} c^{2} x^{7} + 13 \, a^{6} \sqrt {-c} c^{2} x^{6} - 3 \, a^{5} \sqrt {-c} c^{2} x^{5} - 35 \, a^{4} \sqrt {-c} c^{2} x^{4} - 25 \, a^{3} \sqrt {-c} c^{2} x^{3} + 15 \, a^{2} \sqrt {-c} c^{2} x^{2} + 30 \, \sqrt {-c} c^{2}\right )} {\left (a x + 1\right )}^{2}}{30 \, {\left (a^{3} x^{2} + 2 \, a^{2} x + a\right )} {\left (a x - 1\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(-a^2*c*x^2+c)^(5/2),x, algorithm="maxima")

[Out]

1/30*(5*a^7*sqrt(-c)*c^2*x^7 + 13*a^6*sqrt(-c)*c^2*x^6 - 3*a^5*sqrt(-c)*c^2*x^5 - 35*a^4*sqrt(-c)*c^2*x^4 - 25
*a^3*sqrt(-c)*c^2*x^3 + 15*a^2*sqrt(-c)*c^2*x^2 + 30*sqrt(-c)*c^2)*(a*x + 1)^2/((a^3*x^2 + 2*a^2*x + a)*(a*x -
 1))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (c-a^2\,c\,x^2\right )}^{5/2}}{{\left (\frac {a\,x-1}{a\,x+1}\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c - a^2*c*x^2)^(5/2)/((a*x - 1)/(a*x + 1))^(3/2),x)

[Out]

int((c - a^2*c*x^2)^(5/2)/((a*x - 1)/(a*x + 1))^(3/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))**(3/2)*(-a**2*c*x**2+c)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________