3.59 \(\int e^{\frac {1}{2} \coth ^{-1}(a x)} x^4 \, dx\)

Optimal. Leaf size=253 \[ \frac {31 \tan ^{-1}\left (\frac {\sqrt [4]{\frac {1}{a x}+1}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{128 a^5}+\frac {31 \tanh ^{-1}\left (\frac {\sqrt [4]{\frac {1}{a x}+1}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{128 a^5}+\frac {611 x \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}}{1920 a^4}+\frac {269 x^2 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}}{960 a^3}+\frac {11 x^3 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}}{48 a^2}+\frac {1}{5} x^5 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}+\frac {9 x^4 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}}{40 a} \]

[Out]

611/1920*(1-1/a/x)^(3/4)*(1+1/a/x)^(1/4)*x/a^4+269/960*(1-1/a/x)^(3/4)*(1+1/a/x)^(1/4)*x^2/a^3+11/48*(1-1/a/x)
^(3/4)*(1+1/a/x)^(1/4)*x^3/a^2+9/40*(1-1/a/x)^(3/4)*(1+1/a/x)^(1/4)*x^4/a+1/5*(1-1/a/x)^(3/4)*(1+1/a/x)^(1/4)*
x^5+31/128*arctan((1+1/a/x)^(1/4)/(1-1/a/x)^(1/4))/a^5+31/128*arctanh((1+1/a/x)^(1/4)/(1-1/a/x)^(1/4))/a^5

________________________________________________________________________________________

Rubi [A]  time = 0.15, antiderivative size = 253, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 8, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.571, Rules used = {6171, 99, 151, 12, 93, 212, 206, 203} \[ \frac {11 x^3 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}}{48 a^2}+\frac {269 x^2 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}}{960 a^3}+\frac {611 x \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}}{1920 a^4}+\frac {31 \tan ^{-1}\left (\frac {\sqrt [4]{\frac {1}{a x}+1}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{128 a^5}+\frac {31 \tanh ^{-1}\left (\frac {\sqrt [4]{\frac {1}{a x}+1}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{128 a^5}+\frac {1}{5} x^5 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}+\frac {9 x^4 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}}{40 a} \]

Antiderivative was successfully verified.

[In]

Int[E^(ArcCoth[a*x]/2)*x^4,x]

[Out]

(611*(1 - 1/(a*x))^(3/4)*(1 + 1/(a*x))^(1/4)*x)/(1920*a^4) + (269*(1 - 1/(a*x))^(3/4)*(1 + 1/(a*x))^(1/4)*x^2)
/(960*a^3) + (11*(1 - 1/(a*x))^(3/4)*(1 + 1/(a*x))^(1/4)*x^3)/(48*a^2) + (9*(1 - 1/(a*x))^(3/4)*(1 + 1/(a*x))^
(1/4)*x^4)/(40*a) + ((1 - 1/(a*x))^(3/4)*(1 + 1/(a*x))^(1/4)*x^5)/5 + (31*ArcTan[(1 + 1/(a*x))^(1/4)/(1 - 1/(a
*x))^(1/4)])/(128*a^5) + (31*ArcTanh[(1 + 1/(a*x))^(1/4)/(1 - 1/(a*x))^(1/4)])/(128*a^5)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 99

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/((m + 1)*(b*e - a*f)), x] - Dist[1/((m + 1)*(b*e - a*f)), Int[(a +
b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[d*e*n + c*f*(m + p + 2) + d*f*(m + n + p + 2)*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 0] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 151

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*
f)), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegerQ[m]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b), 2]
]}, Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
 !GtQ[a/b, 0]

Rule 6171

Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(x_)^(m_.), x_Symbol] :> -Subst[Int[(1 + x/a)^(n/2)/(x^(m + 2)*(1 - x/a)^(n/2
)), x], x, 1/x] /; FreeQ[{a, n}, x] &&  !IntegerQ[n] && IntegerQ[m]

Rubi steps

\begin {align*} \int e^{\frac {1}{2} \coth ^{-1}(a x)} x^4 \, dx &=-\operatorname {Subst}\left (\int \frac {\sqrt [4]{1+\frac {x}{a}}}{x^6 \sqrt [4]{1-\frac {x}{a}}} \, dx,x,\frac {1}{x}\right )\\ &=\frac {1}{5} \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^5-\frac {1}{5} \operatorname {Subst}\left (\int \frac {\frac {9}{2 a}+\frac {4 x}{a^2}}{x^5 \sqrt [4]{1-\frac {x}{a}} \left (1+\frac {x}{a}\right )^{3/4}} \, dx,x,\frac {1}{x}\right )\\ &=\frac {9 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^4}{40 a}+\frac {1}{5} \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^5+\frac {1}{20} \operatorname {Subst}\left (\int \frac {-\frac {55}{4 a^2}-\frac {27 x}{2 a^3}}{x^4 \sqrt [4]{1-\frac {x}{a}} \left (1+\frac {x}{a}\right )^{3/4}} \, dx,x,\frac {1}{x}\right )\\ &=\frac {11 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^3}{48 a^2}+\frac {9 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^4}{40 a}+\frac {1}{5} \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^5-\frac {1}{60} \operatorname {Subst}\left (\int \frac {\frac {269}{8 a^3}+\frac {55 x}{2 a^4}}{x^3 \sqrt [4]{1-\frac {x}{a}} \left (1+\frac {x}{a}\right )^{3/4}} \, dx,x,\frac {1}{x}\right )\\ &=\frac {269 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^2}{960 a^3}+\frac {11 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^3}{48 a^2}+\frac {9 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^4}{40 a}+\frac {1}{5} \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^5+\frac {1}{120} \operatorname {Subst}\left (\int \frac {-\frac {611}{16 a^4}-\frac {269 x}{8 a^5}}{x^2 \sqrt [4]{1-\frac {x}{a}} \left (1+\frac {x}{a}\right )^{3/4}} \, dx,x,\frac {1}{x}\right )\\ &=\frac {611 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x}{1920 a^4}+\frac {269 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^2}{960 a^3}+\frac {11 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^3}{48 a^2}+\frac {9 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^4}{40 a}+\frac {1}{5} \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^5-\frac {1}{120} \operatorname {Subst}\left (\int \frac {465}{32 a^5 x \sqrt [4]{1-\frac {x}{a}} \left (1+\frac {x}{a}\right )^{3/4}} \, dx,x,\frac {1}{x}\right )\\ &=\frac {611 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x}{1920 a^4}+\frac {269 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^2}{960 a^3}+\frac {11 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^3}{48 a^2}+\frac {9 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^4}{40 a}+\frac {1}{5} \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^5-\frac {31 \operatorname {Subst}\left (\int \frac {1}{x \sqrt [4]{1-\frac {x}{a}} \left (1+\frac {x}{a}\right )^{3/4}} \, dx,x,\frac {1}{x}\right )}{256 a^5}\\ &=\frac {611 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x}{1920 a^4}+\frac {269 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^2}{960 a^3}+\frac {11 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^3}{48 a^2}+\frac {9 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^4}{40 a}+\frac {1}{5} \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^5-\frac {31 \operatorname {Subst}\left (\int \frac {1}{-1+x^4} \, dx,x,\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{64 a^5}\\ &=\frac {611 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x}{1920 a^4}+\frac {269 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^2}{960 a^3}+\frac {11 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^3}{48 a^2}+\frac {9 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^4}{40 a}+\frac {1}{5} \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^5+\frac {31 \operatorname {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{128 a^5}+\frac {31 \operatorname {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{128 a^5}\\ &=\frac {611 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x}{1920 a^4}+\frac {269 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^2}{960 a^3}+\frac {11 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^3}{48 a^2}+\frac {9 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^4}{40 a}+\frac {1}{5} \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^5+\frac {31 \tan ^{-1}\left (\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{128 a^5}+\frac {31 \tanh ^{-1}\left (\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{128 a^5}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 5.22, size = 173, normalized size = 0.68 \[ \frac {\frac {9620 e^{\frac {1}{2} \coth ^{-1}(a x)}}{e^{2 \coth ^{-1}(a x)}-1}+\frac {34000 e^{\frac {1}{2} \coth ^{-1}(a x)}}{\left (e^{2 \coth ^{-1}(a x)}-1\right )^2}+\frac {64640 e^{\frac {1}{2} \coth ^{-1}(a x)}}{\left (e^{2 \coth ^{-1}(a x)}-1\right )^3}+\frac {62976 e^{\frac {1}{2} \coth ^{-1}(a x)}}{\left (e^{2 \coth ^{-1}(a x)}-1\right )^4}+\frac {24576 e^{\frac {1}{2} \coth ^{-1}(a x)}}{\left (e^{2 \coth ^{-1}(a x)}-1\right )^5}-465 \log \left (1-e^{\frac {1}{2} \coth ^{-1}(a x)}\right )+465 \log \left (e^{\frac {1}{2} \coth ^{-1}(a x)}+1\right )+930 \tan ^{-1}\left (e^{\frac {1}{2} \coth ^{-1}(a x)}\right )}{3840 a^5} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^(ArcCoth[a*x]/2)*x^4,x]

[Out]

((24576*E^(ArcCoth[a*x]/2))/(-1 + E^(2*ArcCoth[a*x]))^5 + (62976*E^(ArcCoth[a*x]/2))/(-1 + E^(2*ArcCoth[a*x]))
^4 + (64640*E^(ArcCoth[a*x]/2))/(-1 + E^(2*ArcCoth[a*x]))^3 + (34000*E^(ArcCoth[a*x]/2))/(-1 + E^(2*ArcCoth[a*
x]))^2 + (9620*E^(ArcCoth[a*x]/2))/(-1 + E^(2*ArcCoth[a*x])) + 930*ArcTan[E^(ArcCoth[a*x]/2)] - 465*Log[1 - E^
(ArcCoth[a*x]/2)] + 465*Log[1 + E^(ArcCoth[a*x]/2)])/(3840*a^5)

________________________________________________________________________________________

fricas [A]  time = 0.53, size = 119, normalized size = 0.47 \[ \frac {2 \, {\left (384 \, a^{5} x^{5} + 816 \, a^{4} x^{4} + 872 \, a^{3} x^{3} + 978 \, a^{2} x^{2} + 1149 \, a x + 611\right )} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{4}} - 930 \, \arctan \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right ) + 465 \, \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + 1\right ) - 465 \, \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} - 1\right )}{3840 \, a^{5}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/4)*x^4,x, algorithm="fricas")

[Out]

1/3840*(2*(384*a^5*x^5 + 816*a^4*x^4 + 872*a^3*x^3 + 978*a^2*x^2 + 1149*a*x + 611)*((a*x - 1)/(a*x + 1))^(3/4)
 - 930*arctan(((a*x - 1)/(a*x + 1))^(1/4)) + 465*log(((a*x - 1)/(a*x + 1))^(1/4) + 1) - 465*log(((a*x - 1)/(a*
x + 1))^(1/4) - 1))/a^5

________________________________________________________________________________________

giac [A]  time = 0.27, size = 234, normalized size = 0.92 \[ -\frac {1}{3840} \, a {\left (\frac {930 \, \arctan \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right )}{a^{6}} - \frac {465 \, \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + 1\right )}{a^{6}} + \frac {465 \, \log \left ({\left | \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} - 1 \right |}\right )}{a^{6}} - \frac {4 \, {\left (\frac {1120 \, {\left (a x - 1\right )} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{4}}}{a x + 1} - \frac {5090 \, {\left (a x - 1\right )}^{2} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{4}}}{{\left (a x + 1\right )}^{2}} + \frac {696 \, {\left (a x - 1\right )}^{3} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{4}}}{{\left (a x + 1\right )}^{3}} - \frac {465 \, {\left (a x - 1\right )}^{4} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{4}}}{{\left (a x + 1\right )}^{4}} - 2405 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{4}}\right )}}{a^{6} {\left (\frac {a x - 1}{a x + 1} - 1\right )}^{5}}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/4)*x^4,x, algorithm="giac")

[Out]

-1/3840*a*(930*arctan(((a*x - 1)/(a*x + 1))^(1/4))/a^6 - 465*log(((a*x - 1)/(a*x + 1))^(1/4) + 1)/a^6 + 465*lo
g(abs(((a*x - 1)/(a*x + 1))^(1/4) - 1))/a^6 - 4*(1120*(a*x - 1)*((a*x - 1)/(a*x + 1))^(3/4)/(a*x + 1) - 5090*(
a*x - 1)^2*((a*x - 1)/(a*x + 1))^(3/4)/(a*x + 1)^2 + 696*(a*x - 1)^3*((a*x - 1)/(a*x + 1))^(3/4)/(a*x + 1)^3 -
 465*(a*x - 1)^4*((a*x - 1)/(a*x + 1))^(3/4)/(a*x + 1)^4 - 2405*((a*x - 1)/(a*x + 1))^(3/4))/(a^6*((a*x - 1)/(
a*x + 1) - 1)^5))

________________________________________________________________________________________

maple [F]  time = 0.13, size = 0, normalized size = 0.00 \[ \int \frac {x^{4}}{\left (\frac {a x -1}{a x +1}\right )^{\frac {1}{4}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a*x-1)/(a*x+1))^(1/4)*x^4,x)

[Out]

int(1/((a*x-1)/(a*x+1))^(1/4)*x^4,x)

________________________________________________________________________________________

maxima [A]  time = 0.42, size = 259, normalized size = 1.02 \[ -\frac {1}{3840} \, a {\left (\frac {4 \, {\left (465 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {19}{4}} - 696 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {15}{4}} + 5090 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {11}{4}} - 1120 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {7}{4}} + 2405 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{4}}\right )}}{\frac {5 \, {\left (a x - 1\right )} a^{6}}{a x + 1} - \frac {10 \, {\left (a x - 1\right )}^{2} a^{6}}{{\left (a x + 1\right )}^{2}} + \frac {10 \, {\left (a x - 1\right )}^{3} a^{6}}{{\left (a x + 1\right )}^{3}} - \frac {5 \, {\left (a x - 1\right )}^{4} a^{6}}{{\left (a x + 1\right )}^{4}} + \frac {{\left (a x - 1\right )}^{5} a^{6}}{{\left (a x + 1\right )}^{5}} - a^{6}} + \frac {930 \, \arctan \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right )}{a^{6}} - \frac {465 \, \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + 1\right )}{a^{6}} + \frac {465 \, \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} - 1\right )}{a^{6}}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/4)*x^4,x, algorithm="maxima")

[Out]

-1/3840*a*(4*(465*((a*x - 1)/(a*x + 1))^(19/4) - 696*((a*x - 1)/(a*x + 1))^(15/4) + 5090*((a*x - 1)/(a*x + 1))
^(11/4) - 1120*((a*x - 1)/(a*x + 1))^(7/4) + 2405*((a*x - 1)/(a*x + 1))^(3/4))/(5*(a*x - 1)*a^6/(a*x + 1) - 10
*(a*x - 1)^2*a^6/(a*x + 1)^2 + 10*(a*x - 1)^3*a^6/(a*x + 1)^3 - 5*(a*x - 1)^4*a^6/(a*x + 1)^4 + (a*x - 1)^5*a^
6/(a*x + 1)^5 - a^6) + 930*arctan(((a*x - 1)/(a*x + 1))^(1/4))/a^6 - 465*log(((a*x - 1)/(a*x + 1))^(1/4) + 1)/
a^6 + 465*log(((a*x - 1)/(a*x + 1))^(1/4) - 1)/a^6)

________________________________________________________________________________________

mupad [B]  time = 0.11, size = 229, normalized size = 0.91 \[ \frac {\frac {481\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{3/4}}{192}-\frac {7\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{7/4}}{6}+\frac {509\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{11/4}}{96}-\frac {29\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{15/4}}{40}+\frac {31\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{19/4}}{64}}{a^5+\frac {10\,a^5\,{\left (a\,x-1\right )}^2}{{\left (a\,x+1\right )}^2}-\frac {10\,a^5\,{\left (a\,x-1\right )}^3}{{\left (a\,x+1\right )}^3}+\frac {5\,a^5\,{\left (a\,x-1\right )}^4}{{\left (a\,x+1\right )}^4}-\frac {a^5\,{\left (a\,x-1\right )}^5}{{\left (a\,x+1\right )}^5}-\frac {5\,a^5\,\left (a\,x-1\right )}{a\,x+1}}-\frac {31\,\mathrm {atan}\left ({\left (\frac {a\,x-1}{a\,x+1}\right )}^{1/4}\right )}{128\,a^5}+\frac {31\,\mathrm {atanh}\left ({\left (\frac {a\,x-1}{a\,x+1}\right )}^{1/4}\right )}{128\,a^5} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4/((a*x - 1)/(a*x + 1))^(1/4),x)

[Out]

((481*((a*x - 1)/(a*x + 1))^(3/4))/192 - (7*((a*x - 1)/(a*x + 1))^(7/4))/6 + (509*((a*x - 1)/(a*x + 1))^(11/4)
)/96 - (29*((a*x - 1)/(a*x + 1))^(15/4))/40 + (31*((a*x - 1)/(a*x + 1))^(19/4))/64)/(a^5 + (10*a^5*(a*x - 1)^2
)/(a*x + 1)^2 - (10*a^5*(a*x - 1)^3)/(a*x + 1)^3 + (5*a^5*(a*x - 1)^4)/(a*x + 1)^4 - (a^5*(a*x - 1)^5)/(a*x +
1)^5 - (5*a^5*(a*x - 1))/(a*x + 1)) - (31*atan(((a*x - 1)/(a*x + 1))^(1/4)))/(128*a^5) + (31*atanh(((a*x - 1)/
(a*x + 1))^(1/4)))/(128*a^5)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{4}}{\sqrt [4]{\frac {a x - 1}{a x + 1}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))**(1/4)*x**4,x)

[Out]

Integral(x**4/((a*x - 1)/(a*x + 1))**(1/4), x)

________________________________________________________________________________________