3.576 \(\int e^{3 \coth ^{-1}(a x)} (c-a^2 c x^2) \, dx\)

Optimal. Leaf size=145 \[ -\frac {1}{3} a^2 c x^3 \sqrt {1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{5/2}-\frac {5}{6} a c x^2 \sqrt {1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/2}-\frac {5}{2} c x \sqrt {1-\frac {1}{a x}} \sqrt {\frac {1}{a x}+1}-\frac {5 c \tanh ^{-1}\left (\sqrt {1-\frac {1}{a x}} \sqrt {\frac {1}{a x}+1}\right )}{2 a} \]

[Out]

-5/2*c*arctanh((1-1/a/x)^(1/2)*(1+1/a/x)^(1/2))/a-5/6*a*c*(1+1/a/x)^(3/2)*x^2*(1-1/a/x)^(1/2)-1/3*a^2*c*(1+1/a
/x)^(5/2)*x^3*(1-1/a/x)^(1/2)-5/2*c*x*(1-1/a/x)^(1/2)*(1+1/a/x)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.12, antiderivative size = 145, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {6191, 6195, 94, 92, 208} \[ -\frac {1}{3} a^2 c x^3 \sqrt {1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{5/2}-\frac {5}{6} a c x^2 \sqrt {1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/2}-\frac {5}{2} c x \sqrt {1-\frac {1}{a x}} \sqrt {\frac {1}{a x}+1}-\frac {5 c \tanh ^{-1}\left (\sqrt {1-\frac {1}{a x}} \sqrt {\frac {1}{a x}+1}\right )}{2 a} \]

Antiderivative was successfully verified.

[In]

Int[E^(3*ArcCoth[a*x])*(c - a^2*c*x^2),x]

[Out]

(-5*c*Sqrt[1 - 1/(a*x)]*Sqrt[1 + 1/(a*x)]*x)/2 - (5*a*c*Sqrt[1 - 1/(a*x)]*(1 + 1/(a*x))^(3/2)*x^2)/6 - (a^2*c*
Sqrt[1 - 1/(a*x)]*(1 + 1/(a*x))^(5/2)*x^3)/3 - (5*c*ArcTanh[Sqrt[1 - 1/(a*x)]*Sqrt[1 + 1/(a*x)]])/(2*a)

Rule 92

Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))), x_Symbol] :> Dist[b*f, Subst[I
nt[1/(d*(b*e - a*f)^2 + b*f^2*x^2), x], x, Sqrt[a + b*x]*Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d, e, f}, x] &&
 EqQ[2*b*d*e - f*(b*c + a*d), 0]

Rule 94

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/((m + 1)*(b*e - a*f)), x] - Dist[(n*(d*e - c*f))/((m + 1)*(b*e - a*
f)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[
m + n + p + 2, 0] && GtQ[n, 0] &&  !(SumSimplerQ[p, 1] &&  !SumSimplerQ[m, 1])

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 6191

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[d^p, Int[u*x^(2*p)*(1 -
 1/(a^2*x^2))^p*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] &&  !IntegerQ[n/2] &
& IntegerQ[p]

Rule 6195

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_)^2)^(p_.)*(x_)^(m_.), x_Symbol] :> -Dist[c^p, Subst[Int[((
1 - x/a)^(p - n/2)*(1 + x/a)^(p + n/2))/x^(m + 2), x], x, 1/x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c + a^2
*d, 0] &&  !IntegerQ[n/2] && (IntegerQ[p] || GtQ[c, 0]) &&  !IntegersQ[2*p, p + n/2] && IntegerQ[m]

Rubi steps

\begin {align*} \int e^{3 \coth ^{-1}(a x)} \left (c-a^2 c x^2\right ) \, dx &=-\left (\left (a^2 c\right ) \int e^{3 \coth ^{-1}(a x)} \left (1-\frac {1}{a^2 x^2}\right ) x^2 \, dx\right )\\ &=\left (a^2 c\right ) \operatorname {Subst}\left (\int \frac {\left (1+\frac {x}{a}\right )^{5/2}}{x^4 \sqrt {1-\frac {x}{a}}} \, dx,x,\frac {1}{x}\right )\\ &=-\frac {1}{3} a^2 c \sqrt {1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{5/2} x^3+\frac {1}{3} (5 a c) \operatorname {Subst}\left (\int \frac {\left (1+\frac {x}{a}\right )^{3/2}}{x^3 \sqrt {1-\frac {x}{a}}} \, dx,x,\frac {1}{x}\right )\\ &=-\frac {5}{6} a c \sqrt {1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/2} x^2-\frac {1}{3} a^2 c \sqrt {1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{5/2} x^3+\frac {1}{2} (5 c) \operatorname {Subst}\left (\int \frac {\sqrt {1+\frac {x}{a}}}{x^2 \sqrt {1-\frac {x}{a}}} \, dx,x,\frac {1}{x}\right )\\ &=-\frac {5}{2} c \sqrt {1-\frac {1}{a x}} \sqrt {1+\frac {1}{a x}} x-\frac {5}{6} a c \sqrt {1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/2} x^2-\frac {1}{3} a^2 c \sqrt {1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{5/2} x^3+\frac {(5 c) \operatorname {Subst}\left (\int \frac {1}{x \sqrt {1-\frac {x}{a}} \sqrt {1+\frac {x}{a}}} \, dx,x,\frac {1}{x}\right )}{2 a}\\ &=-\frac {5}{2} c \sqrt {1-\frac {1}{a x}} \sqrt {1+\frac {1}{a x}} x-\frac {5}{6} a c \sqrt {1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/2} x^2-\frac {1}{3} a^2 c \sqrt {1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{5/2} x^3-\frac {(5 c) \operatorname {Subst}\left (\int \frac {1}{\frac {1}{a}-\frac {x^2}{a}} \, dx,x,\sqrt {1-\frac {1}{a x}} \sqrt {1+\frac {1}{a x}}\right )}{2 a^2}\\ &=-\frac {5}{2} c \sqrt {1-\frac {1}{a x}} \sqrt {1+\frac {1}{a x}} x-\frac {5}{6} a c \sqrt {1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/2} x^2-\frac {1}{3} a^2 c \sqrt {1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{5/2} x^3-\frac {5 c \tanh ^{-1}\left (\sqrt {1-\frac {1}{a x}} \sqrt {1+\frac {1}{a x}}\right )}{2 a}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.08, size = 61, normalized size = 0.42 \[ -\frac {c \left (a x \sqrt {1-\frac {1}{a^2 x^2}} \left (2 a^2 x^2+9 a x+22\right )+15 \log \left (x \left (\sqrt {1-\frac {1}{a^2 x^2}}+1\right )\right )\right )}{6 a} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^(3*ArcCoth[a*x])*(c - a^2*c*x^2),x]

[Out]

-1/6*(c*(a*Sqrt[1 - 1/(a^2*x^2)]*x*(22 + 9*a*x + 2*a^2*x^2) + 15*Log[(1 + Sqrt[1 - 1/(a^2*x^2)])*x]))/a

________________________________________________________________________________________

fricas [A]  time = 0.60, size = 91, normalized size = 0.63 \[ -\frac {15 \, c \log \left (\sqrt {\frac {a x - 1}{a x + 1}} + 1\right ) - 15 \, c \log \left (\sqrt {\frac {a x - 1}{a x + 1}} - 1\right ) + {\left (2 \, a^{3} c x^{3} + 11 \, a^{2} c x^{2} + 31 \, a c x + 22 \, c\right )} \sqrt {\frac {a x - 1}{a x + 1}}}{6 \, a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(-a^2*c*x^2+c),x, algorithm="fricas")

[Out]

-1/6*(15*c*log(sqrt((a*x - 1)/(a*x + 1)) + 1) - 15*c*log(sqrt((a*x - 1)/(a*x + 1)) - 1) + (2*a^3*c*x^3 + 11*a^
2*c*x^2 + 31*a*c*x + 22*c)*sqrt((a*x - 1)/(a*x + 1)))/a

________________________________________________________________________________________

giac [A]  time = 0.17, size = 152, normalized size = 1.05 \[ -\frac {1}{6} \, a c {\left (\frac {15 \, \log \left (\sqrt {\frac {a x - 1}{a x + 1}} + 1\right )}{a^{2}} - \frac {15 \, \log \left ({\left | \sqrt {\frac {a x - 1}{a x + 1}} - 1 \right |}\right )}{a^{2}} + \frac {2 \, {\left (\frac {40 \, {\left (a x - 1\right )} \sqrt {\frac {a x - 1}{a x + 1}}}{a x + 1} - \frac {15 \, {\left (a x - 1\right )}^{2} \sqrt {\frac {a x - 1}{a x + 1}}}{{\left (a x + 1\right )}^{2}} - 33 \, \sqrt {\frac {a x - 1}{a x + 1}}\right )}}{a^{2} {\left (\frac {a x - 1}{a x + 1} - 1\right )}^{3}}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(-a^2*c*x^2+c),x, algorithm="giac")

[Out]

-1/6*a*c*(15*log(sqrt((a*x - 1)/(a*x + 1)) + 1)/a^2 - 15*log(abs(sqrt((a*x - 1)/(a*x + 1)) - 1))/a^2 + 2*(40*(
a*x - 1)*sqrt((a*x - 1)/(a*x + 1))/(a*x + 1) - 15*(a*x - 1)^2*sqrt((a*x - 1)/(a*x + 1))/(a*x + 1)^2 - 33*sqrt(
(a*x - 1)/(a*x + 1)))/(a^2*((a*x - 1)/(a*x + 1) - 1)^3))

________________________________________________________________________________________

maple [A]  time = 0.05, size = 183, normalized size = 1.26 \[ -\frac {\left (a x -1\right )^{2} c \left (9 \sqrt {a^{2} x^{2}-1}\, \sqrt {a^{2}}\, x a +2 \left (\left (a x -1\right ) \left (a x +1\right )\right )^{\frac {3}{2}} \sqrt {a^{2}}-9 \ln \left (\frac {a^{2} x +\sqrt {a^{2} x^{2}-1}\, \sqrt {a^{2}}}{\sqrt {a^{2}}}\right ) a +24 \sqrt {\left (a x -1\right ) \left (a x +1\right )}\, \sqrt {a^{2}}+24 a \ln \left (\frac {a^{2} x +\sqrt {\left (a x -1\right ) \left (a x +1\right )}\, \sqrt {a^{2}}}{\sqrt {a^{2}}}\right )\right )}{6 \left (\frac {a x -1}{a x +1}\right )^{\frac {3}{2}} \left (a x +1\right ) \sqrt {\left (a x -1\right ) \left (a x +1\right )}\, a \sqrt {a^{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a*x-1)/(a*x+1))^(3/2)*(-a^2*c*x^2+c),x)

[Out]

-1/6*(a*x-1)^2*c*(9*(a^2*x^2-1)^(1/2)*(a^2)^(1/2)*x*a+2*((a*x-1)*(a*x+1))^(3/2)*(a^2)^(1/2)-9*ln((a^2*x+(a^2*x
^2-1)^(1/2)*(a^2)^(1/2))/(a^2)^(1/2))*a+24*((a*x-1)*(a*x+1))^(1/2)*(a^2)^(1/2)+24*a*ln((a^2*x+((a*x-1)*(a*x+1)
)^(1/2)*(a^2)^(1/2))/(a^2)^(1/2)))/((a*x-1)/(a*x+1))^(3/2)/(a*x+1)/((a*x-1)*(a*x+1))^(1/2)/a/(a^2)^(1/2)

________________________________________________________________________________________

maxima [A]  time = 0.30, size = 171, normalized size = 1.18 \[ \frac {1}{6} \, a {\left (\frac {2 \, {\left (15 \, c \left (\frac {a x - 1}{a x + 1}\right )^{\frac {5}{2}} - 40 \, c \left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{2}} + 33 \, c \sqrt {\frac {a x - 1}{a x + 1}}\right )}}{\frac {3 \, {\left (a x - 1\right )} a^{2}}{a x + 1} - \frac {3 \, {\left (a x - 1\right )}^{2} a^{2}}{{\left (a x + 1\right )}^{2}} + \frac {{\left (a x - 1\right )}^{3} a^{2}}{{\left (a x + 1\right )}^{3}} - a^{2}} - \frac {15 \, c \log \left (\sqrt {\frac {a x - 1}{a x + 1}} + 1\right )}{a^{2}} + \frac {15 \, c \log \left (\sqrt {\frac {a x - 1}{a x + 1}} - 1\right )}{a^{2}}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(-a^2*c*x^2+c),x, algorithm="maxima")

[Out]

1/6*a*(2*(15*c*((a*x - 1)/(a*x + 1))^(5/2) - 40*c*((a*x - 1)/(a*x + 1))^(3/2) + 33*c*sqrt((a*x - 1)/(a*x + 1))
)/(3*(a*x - 1)*a^2/(a*x + 1) - 3*(a*x - 1)^2*a^2/(a*x + 1)^2 + (a*x - 1)^3*a^2/(a*x + 1)^3 - a^2) - 15*c*log(s
qrt((a*x - 1)/(a*x + 1)) + 1)/a^2 + 15*c*log(sqrt((a*x - 1)/(a*x + 1)) - 1)/a^2)

________________________________________________________________________________________

mupad [B]  time = 0.07, size = 133, normalized size = 0.92 \[ -\frac {11\,c\,\sqrt {\frac {a\,x-1}{a\,x+1}}-\frac {40\,c\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{3/2}}{3}+5\,c\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{5/2}}{a-\frac {3\,a\,\left (a\,x-1\right )}{a\,x+1}+\frac {3\,a\,{\left (a\,x-1\right )}^2}{{\left (a\,x+1\right )}^2}-\frac {a\,{\left (a\,x-1\right )}^3}{{\left (a\,x+1\right )}^3}}-\frac {5\,c\,\mathrm {atanh}\left (\sqrt {\frac {a\,x-1}{a\,x+1}}\right )}{a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c - a^2*c*x^2)/((a*x - 1)/(a*x + 1))^(3/2),x)

[Out]

- (11*c*((a*x - 1)/(a*x + 1))^(1/2) - (40*c*((a*x - 1)/(a*x + 1))^(3/2))/3 + 5*c*((a*x - 1)/(a*x + 1))^(5/2))/
(a - (3*a*(a*x - 1))/(a*x + 1) + (3*a*(a*x - 1)^2)/(a*x + 1)^2 - (a*(a*x - 1)^3)/(a*x + 1)^3) - (5*c*atanh(((a
*x - 1)/(a*x + 1))^(1/2)))/a

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ - c \left (\int \frac {a^{2} x^{2}}{\frac {a x \sqrt {\frac {a x}{a x + 1} - \frac {1}{a x + 1}}}{a x + 1} - \frac {\sqrt {\frac {a x}{a x + 1} - \frac {1}{a x + 1}}}{a x + 1}}\, dx + \int \left (- \frac {1}{\frac {a x \sqrt {\frac {a x}{a x + 1} - \frac {1}{a x + 1}}}{a x + 1} - \frac {\sqrt {\frac {a x}{a x + 1} - \frac {1}{a x + 1}}}{a x + 1}}\right )\, dx\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))**(3/2)*(-a**2*c*x**2+c),x)

[Out]

-c*(Integral(a**2*x**2/(a*x*sqrt(a*x/(a*x + 1) - 1/(a*x + 1))/(a*x + 1) - sqrt(a*x/(a*x + 1) - 1/(a*x + 1))/(a
*x + 1)), x) + Integral(-1/(a*x*sqrt(a*x/(a*x + 1) - 1/(a*x + 1))/(a*x + 1) - sqrt(a*x/(a*x + 1) - 1/(a*x + 1)
)/(a*x + 1)), x))

________________________________________________________________________________________