3.441 \(\int e^{\coth ^{-1}(a x)} (c-\frac {c}{a x})^{3/2} \, dx\)

Optimal. Leaf size=117 \[ -\frac {c^{3/2} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {1-\frac {1}{a^2 x^2}}}{\sqrt {c-\frac {c}{a x}}}\right )}{a}+\frac {c^3 x \left (1-\frac {1}{a^2 x^2}\right )^{3/2}}{\left (c-\frac {c}{a x}\right )^{3/2}}+\frac {c^2 \sqrt {1-\frac {1}{a^2 x^2}}}{a \sqrt {c-\frac {c}{a x}}} \]

[Out]

c^3*(1-1/a^2/x^2)^(3/2)*x/(c-c/a/x)^(3/2)-c^(3/2)*arctanh(c^(1/2)*(1-1/a^2/x^2)^(1/2)/(c-c/a/x)^(1/2))/a+c^2*(
1-1/a^2/x^2)^(1/2)/a/(c-c/a/x)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.22, antiderivative size = 117, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.227, Rules used = {6177, 879, 865, 875, 208} \[ \frac {c^3 x \left (1-\frac {1}{a^2 x^2}\right )^{3/2}}{\left (c-\frac {c}{a x}\right )^{3/2}}+\frac {c^2 \sqrt {1-\frac {1}{a^2 x^2}}}{a \sqrt {c-\frac {c}{a x}}}-\frac {c^{3/2} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {1-\frac {1}{a^2 x^2}}}{\sqrt {c-\frac {c}{a x}}}\right )}{a} \]

Antiderivative was successfully verified.

[In]

Int[E^ArcCoth[a*x]*(c - c/(a*x))^(3/2),x]

[Out]

(c^2*Sqrt[1 - 1/(a^2*x^2)])/(a*Sqrt[c - c/(a*x)]) + (c^3*(1 - 1/(a^2*x^2))^(3/2)*x)/(c - c/(a*x))^(3/2) - (c^(
3/2)*ArcTanh[(Sqrt[c]*Sqrt[1 - 1/(a^2*x^2)])/Sqrt[c - c/(a*x)]])/a

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 865

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[((d + e*
x)^m*(f + g*x)^(n + 1)*(a + c*x^2)^p)/(g*(m - n - 1)), x] - Dist[(c*m*(e*f + d*g))/(e^2*g*(m - n - 1)), Int[(d
 + e*x)^(m + 1)*(f + g*x)^n*(a + c*x^2)^(p - 1), x], x] /; FreeQ[{a, c, d, e, f, g, n}, x] && NeQ[e*f - d*g, 0
] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0] && GtQ[p, 0] && NeQ[m - n - 1, 0] &&  !IGtQ[n, 0]
 &&  !(IntegerQ[n + p] && LtQ[n + p + 2, 0]) && RationalQ[n]

Rule 875

Int[Sqrt[(d_) + (e_.)*(x_)]/(((f_.) + (g_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[2*e^2, Subst[I
nt[1/(c*(e*f + d*g) + e^2*g*x^2), x], x, Sqrt[a + c*x^2]/Sqrt[d + e*x]], x] /; FreeQ[{a, c, d, e, f, g}, x] &&
 NeQ[e*f - d*g, 0] && EqQ[c*d^2 + a*e^2, 0]

Rule 879

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e^2*(e*f
 - d*g)*(d + e*x)^(m - 2)*(f + g*x)^(n + 1)*(a + c*x^2)^(p + 1))/(c*g*(n + 1)*(e*f + d*g)), x] - Dist[(e*(e*f*
(p + 1) - d*g*(2*n + p + 3)))/(g*(n + 1)*(e*f + d*g)), Int[(d + e*x)^(m - 1)*(f + g*x)^(n + 1)*(a + c*x^2)^p,
x], x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] && NeQ[e*f - d*g, 0] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] &&
 EqQ[m + p - 1, 0] && LtQ[n, -1] && IntegerQ[2*p]

Rule 6177

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_))^(p_.), x_Symbol] :> -Dist[c^n, Subst[Int[((c + d*x)^(p -
 n)*(1 - x^2/a^2)^(n/2))/x^2, x], x, 1/x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[c + a*d, 0] && IntegerQ[(n - 1)
/2] && (IntegerQ[p] || EqQ[p, n/2] || EqQ[p, n/2 + 1]) && IntegerQ[2*p]

Rubi steps

\begin {align*} \int e^{\coth ^{-1}(a x)} \left (c-\frac {c}{a x}\right )^{3/2} \, dx &=-\left (c \operatorname {Subst}\left (\int \frac {\sqrt {c-\frac {c x}{a}} \sqrt {1-\frac {x^2}{a^2}}}{x^2} \, dx,x,\frac {1}{x}\right )\right )\\ &=\frac {c^3 \left (1-\frac {1}{a^2 x^2}\right )^{3/2} x}{\left (c-\frac {c}{a x}\right )^{3/2}}+\frac {c^2 \operatorname {Subst}\left (\int \frac {\sqrt {1-\frac {x^2}{a^2}}}{x \sqrt {c-\frac {c x}{a}}} \, dx,x,\frac {1}{x}\right )}{2 a}\\ &=\frac {c^2 \sqrt {1-\frac {1}{a^2 x^2}}}{a \sqrt {c-\frac {c}{a x}}}+\frac {c^3 \left (1-\frac {1}{a^2 x^2}\right )^{3/2} x}{\left (c-\frac {c}{a x}\right )^{3/2}}+\frac {c \operatorname {Subst}\left (\int \frac {\sqrt {c-\frac {c x}{a}}}{x \sqrt {1-\frac {x^2}{a^2}}} \, dx,x,\frac {1}{x}\right )}{2 a}\\ &=\frac {c^2 \sqrt {1-\frac {1}{a^2 x^2}}}{a \sqrt {c-\frac {c}{a x}}}+\frac {c^3 \left (1-\frac {1}{a^2 x^2}\right )^{3/2} x}{\left (c-\frac {c}{a x}\right )^{3/2}}+\frac {c^3 \operatorname {Subst}\left (\int \frac {1}{-\frac {c}{a^2}+\frac {c^2 x^2}{a^2}} \, dx,x,\frac {\sqrt {1-\frac {1}{a^2 x^2}}}{\sqrt {c-\frac {c}{a x}}}\right )}{a^3}\\ &=\frac {c^2 \sqrt {1-\frac {1}{a^2 x^2}}}{a \sqrt {c-\frac {c}{a x}}}+\frac {c^3 \left (1-\frac {1}{a^2 x^2}\right )^{3/2} x}{\left (c-\frac {c}{a x}\right )^{3/2}}-\frac {c^{3/2} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {1-\frac {1}{a^2 x^2}}}{\sqrt {c-\frac {c}{a x}}}\right )}{a}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.06, size = 70, normalized size = 0.60 \[ \frac {c \sqrt {c-\frac {c}{a x}} \left (\sqrt {\frac {1}{a x}+1} (a x+2)-\tanh ^{-1}\left (\sqrt {\frac {1}{a x}+1}\right )\right )}{a \sqrt {1-\frac {1}{a x}}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^ArcCoth[a*x]*(c - c/(a*x))^(3/2),x]

[Out]

(c*Sqrt[c - c/(a*x)]*(Sqrt[1 + 1/(a*x)]*(2 + a*x) - ArcTanh[Sqrt[1 + 1/(a*x)]]))/(a*Sqrt[1 - 1/(a*x)])

________________________________________________________________________________________

fricas [A]  time = 0.61, size = 313, normalized size = 2.68 \[ \left [\frac {{\left (a c x - c\right )} \sqrt {c} \log \left (-\frac {8 \, a^{3} c x^{3} - 7 \, a c x - 4 \, {\left (2 \, a^{3} x^{3} + 3 \, a^{2} x^{2} + a x\right )} \sqrt {c} \sqrt {\frac {a x - 1}{a x + 1}} \sqrt {\frac {a c x - c}{a x}} - c}{a x - 1}\right ) + 4 \, {\left (a^{2} c x^{2} + 3 \, a c x + 2 \, c\right )} \sqrt {\frac {a x - 1}{a x + 1}} \sqrt {\frac {a c x - c}{a x}}}{4 \, {\left (a^{2} x - a\right )}}, \frac {{\left (a c x - c\right )} \sqrt {-c} \arctan \left (\frac {2 \, {\left (a^{2} x^{2} + a x\right )} \sqrt {-c} \sqrt {\frac {a x - 1}{a x + 1}} \sqrt {\frac {a c x - c}{a x}}}{2 \, a^{2} c x^{2} - a c x - c}\right ) + 2 \, {\left (a^{2} c x^{2} + 3 \, a c x + 2 \, c\right )} \sqrt {\frac {a x - 1}{a x + 1}} \sqrt {\frac {a c x - c}{a x}}}{2 \, {\left (a^{2} x - a\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)*(c-c/a/x)^(3/2),x, algorithm="fricas")

[Out]

[1/4*((a*c*x - c)*sqrt(c)*log(-(8*a^3*c*x^3 - 7*a*c*x - 4*(2*a^3*x^3 + 3*a^2*x^2 + a*x)*sqrt(c)*sqrt((a*x - 1)
/(a*x + 1))*sqrt((a*c*x - c)/(a*x)) - c)/(a*x - 1)) + 4*(a^2*c*x^2 + 3*a*c*x + 2*c)*sqrt((a*x - 1)/(a*x + 1))*
sqrt((a*c*x - c)/(a*x)))/(a^2*x - a), 1/2*((a*c*x - c)*sqrt(-c)*arctan(2*(a^2*x^2 + a*x)*sqrt(-c)*sqrt((a*x -
1)/(a*x + 1))*sqrt((a*c*x - c)/(a*x))/(2*a^2*c*x^2 - a*c*x - c)) + 2*(a^2*c*x^2 + 3*a*c*x + 2*c)*sqrt((a*x - 1
)/(a*x + 1))*sqrt((a*c*x - c)/(a*x)))/(a^2*x - a)]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: RuntimeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)*(c-c/a/x)^(3/2),x, algorithm="giac")

[Out]

Exception raised: RuntimeError >> An error occurred running a Giac command:INPUT:sage2OUTPUT:Warning, integrat
ion of abs or sign assumes constant sign by intervals (correct if the argument is real):Check [abs(a*x+1)]sym2
poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

maple [A]  time = 0.06, size = 105, normalized size = 0.90 \[ -\frac {\sqrt {\frac {c \left (a x -1\right )}{a x}}\, c \left (-2 a^{\frac {3}{2}} x \sqrt {\left (a x +1\right ) x}+\ln \left (\frac {2 \sqrt {\left (a x +1\right ) x}\, \sqrt {a}+2 a x +1}{2 \sqrt {a}}\right ) x a -4 \sqrt {\left (a x +1\right ) x}\, \sqrt {a}\right )}{2 \sqrt {\frac {a x -1}{a x +1}}\, a^{\frac {3}{2}} \sqrt {\left (a x +1\right ) x}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a*x-1)/(a*x+1))^(1/2)*(c-c/a/x)^(3/2),x)

[Out]

-1/2/((a*x-1)/(a*x+1))^(1/2)*(c*(a*x-1)/a/x)^(1/2)*c/a^(3/2)*(-2*a^(3/2)*x*((a*x+1)*x)^(1/2)+ln(1/2*(2*((a*x+1
)*x)^(1/2)*a^(1/2)+2*a*x+1)/a^(1/2))*x*a-4*((a*x+1)*x)^(1/2)*a^(1/2))/((a*x+1)*x)^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (c - \frac {c}{a x}\right )}^{\frac {3}{2}}}{\sqrt {\frac {a x - 1}{a x + 1}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)*(c-c/a/x)^(3/2),x, algorithm="maxima")

[Out]

integrate((c - c/(a*x))^(3/2)/sqrt((a*x - 1)/(a*x + 1)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (c-\frac {c}{a\,x}\right )}^{3/2}}{\sqrt {\frac {a\,x-1}{a\,x+1}}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c - c/(a*x))^(3/2)/((a*x - 1)/(a*x + 1))^(1/2),x)

[Out]

int((c - c/(a*x))^(3/2)/((a*x - 1)/(a*x + 1))^(1/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))**(1/2)*(c-c/a/x)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________