3.434 \(\int \frac {e^{-3 \coth ^{-1}(a x)}}{(c-\frac {c}{a x})^2} \, dx\)

Optimal. Leaf size=74 \[ -\frac {x \left (a-\frac {1}{x}\right )}{a c^2 \sqrt {1-\frac {1}{a^2 x^2}}}+\frac {2 x \sqrt {1-\frac {1}{a^2 x^2}}}{c^2}-\frac {\tanh ^{-1}\left (\sqrt {1-\frac {1}{a^2 x^2}}\right )}{a c^2} \]

[Out]

-arctanh((1-1/a^2/x^2)^(1/2))/a/c^2-(a-1/x)*x/a/c^2/(1-1/a^2/x^2)^(1/2)+2*x*(1-1/a^2/x^2)^(1/2)/c^2

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 74, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.273, Rules used = {6177, 823, 807, 266, 63, 208} \[ -\frac {x \left (a-\frac {1}{x}\right )}{a c^2 \sqrt {1-\frac {1}{a^2 x^2}}}+\frac {2 x \sqrt {1-\frac {1}{a^2 x^2}}}{c^2}-\frac {\tanh ^{-1}\left (\sqrt {1-\frac {1}{a^2 x^2}}\right )}{a c^2} \]

Antiderivative was successfully verified.

[In]

Int[1/(E^(3*ArcCoth[a*x])*(c - c/(a*x))^2),x]

[Out]

(2*Sqrt[1 - 1/(a^2*x^2)]*x)/c^2 - ((a - x^(-1))*x)/(a*c^2*Sqrt[1 - 1/(a^2*x^2)]) - ArcTanh[Sqrt[1 - 1/(a^2*x^2
)]]/(a*c^2)

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 807

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> -Simp[((e*f - d*g
)*(d + e*x)^(m + 1)*(a + c*x^2)^(p + 1))/(2*(p + 1)*(c*d^2 + a*e^2)), x] + Dist[(c*d*f + a*e*g)/(c*d^2 + a*e^2
), Int[(d + e*x)^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0]
&& EqQ[Simplify[m + 2*p + 3], 0]

Rule 823

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[((d + e*x)^(
m + 1)*(f*a*c*e - a*g*c*d + c*(c*d*f + a*e*g)*x)*(a + c*x^2)^(p + 1))/(2*a*c*(p + 1)*(c*d^2 + a*e^2)), x] + Di
st[1/(2*a*c*(p + 1)*(c*d^2 + a*e^2)), Int[(d + e*x)^m*(a + c*x^2)^(p + 1)*Simp[f*(c^2*d^2*(2*p + 3) + a*c*e^2*
(m + 2*p + 3)) - a*c*d*e*g*m + c*e*(c*d*f + a*e*g)*(m + 2*p + 4)*x, x], x], x] /; FreeQ[{a, c, d, e, f, g}, x]
 && NeQ[c*d^2 + a*e^2, 0] && LtQ[p, -1] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 6177

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_))^(p_.), x_Symbol] :> -Dist[c^n, Subst[Int[((c + d*x)^(p -
 n)*(1 - x^2/a^2)^(n/2))/x^2, x], x, 1/x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[c + a*d, 0] && IntegerQ[(n - 1)
/2] && (IntegerQ[p] || EqQ[p, n/2] || EqQ[p, n/2 + 1]) && IntegerQ[2*p]

Rubi steps

\begin {align*} \int \frac {e^{-3 \coth ^{-1}(a x)}}{\left (c-\frac {c}{a x}\right )^2} \, dx &=-\frac {\operatorname {Subst}\left (\int \frac {c-\frac {c x}{a}}{x^2 \left (1-\frac {x^2}{a^2}\right )^{3/2}} \, dx,x,\frac {1}{x}\right )}{c^3}\\ &=-\frac {\left (a-\frac {1}{x}\right ) x}{a c^2 \sqrt {1-\frac {1}{a^2 x^2}}}-\frac {a^2 \operatorname {Subst}\left (\int \frac {\frac {2 c}{a^2}-\frac {c x}{a^3}}{x^2 \sqrt {1-\frac {x^2}{a^2}}} \, dx,x,\frac {1}{x}\right )}{c^3}\\ &=\frac {2 \sqrt {1-\frac {1}{a^2 x^2}} x}{c^2}-\frac {\left (a-\frac {1}{x}\right ) x}{a c^2 \sqrt {1-\frac {1}{a^2 x^2}}}+\frac {\operatorname {Subst}\left (\int \frac {1}{x \sqrt {1-\frac {x^2}{a^2}}} \, dx,x,\frac {1}{x}\right )}{a c^2}\\ &=\frac {2 \sqrt {1-\frac {1}{a^2 x^2}} x}{c^2}-\frac {\left (a-\frac {1}{x}\right ) x}{a c^2 \sqrt {1-\frac {1}{a^2 x^2}}}+\frac {\operatorname {Subst}\left (\int \frac {1}{x \sqrt {1-\frac {x}{a^2}}} \, dx,x,\frac {1}{x^2}\right )}{2 a c^2}\\ &=\frac {2 \sqrt {1-\frac {1}{a^2 x^2}} x}{c^2}-\frac {\left (a-\frac {1}{x}\right ) x}{a c^2 \sqrt {1-\frac {1}{a^2 x^2}}}-\frac {a \operatorname {Subst}\left (\int \frac {1}{a^2-a^2 x^2} \, dx,x,\sqrt {1-\frac {1}{a^2 x^2}}\right )}{c^2}\\ &=\frac {2 \sqrt {1-\frac {1}{a^2 x^2}} x}{c^2}-\frac {\left (a-\frac {1}{x}\right ) x}{a c^2 \sqrt {1-\frac {1}{a^2 x^2}}}-\frac {\tanh ^{-1}\left (\sqrt {1-\frac {1}{a^2 x^2}}\right )}{a c^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 69, normalized size = 0.93 \[ \frac {a^2 x^2-a x \sqrt {1-\frac {1}{a^2 x^2}} \tanh ^{-1}\left (\sqrt {1-\frac {1}{a^2 x^2}}\right )+a x-2}{a^2 c^2 x \sqrt {1-\frac {1}{a^2 x^2}}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(E^(3*ArcCoth[a*x])*(c - c/(a*x))^2),x]

[Out]

(-2 + a*x + a^2*x^2 - a*Sqrt[1 - 1/(a^2*x^2)]*x*ArcTanh[Sqrt[1 - 1/(a^2*x^2)]])/(a^2*c^2*Sqrt[1 - 1/(a^2*x^2)]
*x)

________________________________________________________________________________________

fricas [A]  time = 0.60, size = 67, normalized size = 0.91 \[ \frac {{\left (a x + 2\right )} \sqrt {\frac {a x - 1}{a x + 1}} - \log \left (\sqrt {\frac {a x - 1}{a x + 1}} + 1\right ) + \log \left (\sqrt {\frac {a x - 1}{a x + 1}} - 1\right )}{a c^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x-1)/(a*x+1))^(3/2)/(c-c/a/x)^2,x, algorithm="fricas")

[Out]

((a*x + 2)*sqrt((a*x - 1)/(a*x + 1)) - log(sqrt((a*x - 1)/(a*x + 1)) + 1) + log(sqrt((a*x - 1)/(a*x + 1)) - 1)
)/(a*c^2)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \mathit {undef} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x-1)/(a*x+1))^(3/2)/(c-c/a/x)^2,x, algorithm="giac")

[Out]

undef

________________________________________________________________________________________

maple [B]  time = 0.06, size = 250, normalized size = 3.38 \[ -\frac {\left (2 \ln \left (\frac {a^{2} x +\sqrt {\left (a x -1\right ) \left (a x +1\right )}\, \sqrt {a^{2}}}{\sqrt {a^{2}}}\right ) x^{2} a^{3}-3 \sqrt {\left (a x -1\right ) \left (a x +1\right )}\, \sqrt {a^{2}}\, x^{2} a^{2}+4 \ln \left (\frac {a^{2} x +\sqrt {\left (a x -1\right ) \left (a x +1\right )}\, \sqrt {a^{2}}}{\sqrt {a^{2}}}\right ) x \,a^{2}+\left (\left (a x -1\right ) \left (a x +1\right )\right )^{\frac {3}{2}} \sqrt {a^{2}}-6 \sqrt {\left (a x -1\right ) \left (a x +1\right )}\, \sqrt {a^{2}}\, x a +2 a \ln \left (\frac {a^{2} x +\sqrt {\left (a x -1\right ) \left (a x +1\right )}\, \sqrt {a^{2}}}{\sqrt {a^{2}}}\right )-3 \sqrt {\left (a x -1\right ) \left (a x +1\right )}\, \sqrt {a^{2}}\right ) \left (\frac {a x -1}{a x +1}\right )^{\frac {3}{2}}}{2 a \sqrt {a^{2}}\, c^{2} \sqrt {\left (a x -1\right ) \left (a x +1\right )}\, \left (a x -1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a*x-1)/(a*x+1))^(3/2)/(c-c/a/x)^2,x)

[Out]

-1/2*(2*ln((a^2*x+((a*x-1)*(a*x+1))^(1/2)*(a^2)^(1/2))/(a^2)^(1/2))*x^2*a^3-3*((a*x-1)*(a*x+1))^(1/2)*(a^2)^(1
/2)*x^2*a^2+4*ln((a^2*x+((a*x-1)*(a*x+1))^(1/2)*(a^2)^(1/2))/(a^2)^(1/2))*x*a^2+((a*x-1)*(a*x+1))^(3/2)*(a^2)^
(1/2)-6*((a*x-1)*(a*x+1))^(1/2)*(a^2)^(1/2)*x*a+2*a*ln((a^2*x+((a*x-1)*(a*x+1))^(1/2)*(a^2)^(1/2))/(a^2)^(1/2)
)-3*((a*x-1)*(a*x+1))^(1/2)*(a^2)^(1/2))/a*((a*x-1)/(a*x+1))^(3/2)/(a^2)^(1/2)/c^2/((a*x-1)*(a*x+1))^(1/2)/(a*
x-1)

________________________________________________________________________________________

maxima [A]  time = 0.30, size = 125, normalized size = 1.69 \[ -a {\left (\frac {2 \, \sqrt {\frac {a x - 1}{a x + 1}}}{\frac {{\left (a x - 1\right )} a^{2} c^{2}}{a x + 1} - a^{2} c^{2}} + \frac {\log \left (\sqrt {\frac {a x - 1}{a x + 1}} + 1\right )}{a^{2} c^{2}} - \frac {\log \left (\sqrt {\frac {a x - 1}{a x + 1}} - 1\right )}{a^{2} c^{2}} - \frac {\sqrt {\frac {a x - 1}{a x + 1}}}{a^{2} c^{2}}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x-1)/(a*x+1))^(3/2)/(c-c/a/x)^2,x, algorithm="maxima")

[Out]

-a*(2*sqrt((a*x - 1)/(a*x + 1))/((a*x - 1)*a^2*c^2/(a*x + 1) - a^2*c^2) + log(sqrt((a*x - 1)/(a*x + 1)) + 1)/(
a^2*c^2) - log(sqrt((a*x - 1)/(a*x + 1)) - 1)/(a^2*c^2) - sqrt((a*x - 1)/(a*x + 1))/(a^2*c^2))

________________________________________________________________________________________

mupad [B]  time = 1.19, size = 90, normalized size = 1.22 \[ \frac {2\,\sqrt {\frac {a\,x-1}{a\,x+1}}}{a\,c^2-\frac {a\,c^2\,\left (a\,x-1\right )}{a\,x+1}}+\frac {\sqrt {\frac {a\,x-1}{a\,x+1}}}{a\,c^2}-\frac {2\,\mathrm {atanh}\left (\sqrt {\frac {a\,x-1}{a\,x+1}}\right )}{a\,c^2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a*x - 1)/(a*x + 1))^(3/2)/(c - c/(a*x))^2,x)

[Out]

(2*((a*x - 1)/(a*x + 1))^(1/2))/(a*c^2 - (a*c^2*(a*x - 1))/(a*x + 1)) + ((a*x - 1)/(a*x + 1))^(1/2)/(a*c^2) -
(2*atanh(((a*x - 1)/(a*x + 1))^(1/2)))/(a*c^2)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {a^{2} \left (\int \left (- \frac {x^{2} \sqrt {\frac {a x}{a x + 1} - \frac {1}{a x + 1}}}{a^{3} x^{3} - a^{2} x^{2} - a x + 1}\right )\, dx + \int \frac {a x^{3} \sqrt {\frac {a x}{a x + 1} - \frac {1}{a x + 1}}}{a^{3} x^{3} - a^{2} x^{2} - a x + 1}\, dx\right )}{c^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x-1)/(a*x+1))**(3/2)/(c-c/a/x)**2,x)

[Out]

a**2*(Integral(-x**2*sqrt(a*x/(a*x + 1) - 1/(a*x + 1))/(a**3*x**3 - a**2*x**2 - a*x + 1), x) + Integral(a*x**3
*sqrt(a*x/(a*x + 1) - 1/(a*x + 1))/(a**3*x**3 - a**2*x**2 - a*x + 1), x))/c**2

________________________________________________________________________________________