3.376 \(\int \frac {e^{n \coth ^{-1}(a x)}}{(c-a c x)^{3/2}} \, dx\)

Optimal. Leaf size=96 \[ -\frac {2 x \left (\frac {a-\frac {1}{x}}{a+\frac {1}{x}}\right )^{\frac {n+3}{2}} \left (1-\frac {1}{a x}\right )^{-n/2} \left (\frac {1}{a x}+1\right )^{\frac {n+2}{2}} \, _2F_1\left (\frac {1}{2},\frac {n+3}{2};\frac {3}{2};\frac {2}{\left (a+\frac {1}{x}\right ) x}\right )}{(c-a c x)^{3/2}} \]

[Out]

-2*((a-1/x)/(a+1/x))^(3/2+1/2*n)*(1+1/a/x)^(1+1/2*n)*x*hypergeom([1/2, 3/2+1/2*n],[3/2],2/(a+1/x)/x)/((1-1/a/x
)^(1/2*n))/(-a*c*x+c)^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.20, antiderivative size = 96, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.150, Rules used = {6176, 6181, 132} \[ -\frac {2 x \left (\frac {a-\frac {1}{x}}{a+\frac {1}{x}}\right )^{\frac {n+3}{2}} \left (1-\frac {1}{a x}\right )^{-n/2} \left (\frac {1}{a x}+1\right )^{\frac {n+2}{2}} \, _2F_1\left (\frac {1}{2},\frac {n+3}{2};\frac {3}{2};\frac {2}{\left (a+\frac {1}{x}\right ) x}\right )}{(c-a c x)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[E^(n*ArcCoth[a*x])/(c - a*c*x)^(3/2),x]

[Out]

(-2*((a - x^(-1))/(a + x^(-1)))^((3 + n)/2)*(1 + 1/(a*x))^((2 + n)/2)*x*Hypergeometric2F1[1/2, (3 + n)/2, 3/2,
 2/((a + x^(-1))*x)])/((1 - 1/(a*x))^(n/2)*(c - a*c*x)^(3/2))

Rule 132

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Simp[((a + b*x
)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1)*Hypergeometric2F1[m + 1, -n, m + 2, -(((d*e - c*f)*(a + b*x))/((b*c -
a*d)*(e + f*x)))])/(((b*e - a*f)*(m + 1))*(((b*e - a*f)*(c + d*x))/((b*c - a*d)*(e + f*x)))^n), x] /; FreeQ[{a
, b, c, d, e, f, m, n, p}, x] && EqQ[m + n + p + 2, 0] &&  !IntegerQ[n]

Rule 6176

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_), x_Symbol] :> Dist[(c + d*x)^p/(x^p*(1 + c/(d
*x))^p), Int[u*x^p*(1 + c/(d*x))^p*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^
2, 0] &&  !IntegerQ[n/2] &&  !IntegerQ[p]

Rule 6181

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_))^(p_.)*(x_)^(m_), x_Symbol] :> -Dist[c^p*x^m*(1/x)^m, Sub
st[Int[((1 + (d*x)/c)^p*(1 + x/a)^(n/2))/(x^(m + 2)*(1 - x/a)^(n/2)), x], x, 1/x], x] /; FreeQ[{a, c, d, m, n,
 p}, x] && EqQ[c^2 - a^2*d^2, 0] &&  !IntegerQ[n/2] && (IntegerQ[p] || GtQ[c, 0]) &&  !IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {e^{n \coth ^{-1}(a x)}}{(c-a c x)^{3/2}} \, dx &=\frac {\left (\left (1-\frac {1}{a x}\right )^{3/2} x^{3/2}\right ) \int \frac {e^{n \coth ^{-1}(a x)}}{\left (1-\frac {1}{a x}\right )^{3/2} x^{3/2}} \, dx}{(c-a c x)^{3/2}}\\ &=-\frac {\left (1-\frac {1}{a x}\right )^{3/2} \operatorname {Subst}\left (\int \frac {\left (1-\frac {x}{a}\right )^{-\frac {3}{2}-\frac {n}{2}} \left (1+\frac {x}{a}\right )^{n/2}}{\sqrt {x}} \, dx,x,\frac {1}{x}\right )}{\left (\frac {1}{x}\right )^{3/2} (c-a c x)^{3/2}}\\ &=-\frac {2 \left (\frac {a-\frac {1}{x}}{a+\frac {1}{x}}\right )^{\frac {3+n}{2}} \left (1-\frac {1}{a x}\right )^{-n/2} \left (1+\frac {1}{a x}\right )^{\frac {2+n}{2}} x \, _2F_1\left (\frac {1}{2},\frac {3+n}{2};\frac {3}{2};\frac {2}{\left (a+\frac {1}{x}\right ) x}\right )}{(c-a c x)^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 94, normalized size = 0.98 \[ \frac {2 \left (1-\frac {1}{a x}\right )^{-n/2} \left (\frac {1}{a x}+1\right )^{n/2} \left (\frac {a x-1}{a x+1}\right )^{\frac {n+1}{2}} \, _2F_1\left (\frac {1}{2},\frac {n+3}{2};\frac {3}{2};\frac {2}{a x+1}\right )}{a c \sqrt {c-a c x}} \]

Antiderivative was successfully verified.

[In]

Integrate[E^(n*ArcCoth[a*x])/(c - a*c*x)^(3/2),x]

[Out]

(2*(1 + 1/(a*x))^(n/2)*((-1 + a*x)/(1 + a*x))^((1 + n)/2)*Hypergeometric2F1[1/2, (3 + n)/2, 3/2, 2/(1 + a*x)])
/(a*c*(1 - 1/(a*x))^(n/2)*Sqrt[c - a*c*x])

________________________________________________________________________________________

fricas [F]  time = 0.63, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {-a c x + c} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{2} \, n}}{a^{2} c^{2} x^{2} - 2 \, a c^{2} x + c^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arccoth(a*x))/(-a*c*x+c)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(-a*c*x + c)*((a*x - 1)/(a*x + 1))^(1/2*n)/(a^2*c^2*x^2 - 2*a*c^2*x + c^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{2} \, n}}{{\left (-a c x + c\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arccoth(a*x))/(-a*c*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate(((a*x - 1)/(a*x + 1))^(1/2*n)/(-a*c*x + c)^(3/2), x)

________________________________________________________________________________________

maple [F]  time = 0.35, size = 0, normalized size = 0.00 \[ \int \frac {{\mathrm e}^{n \,\mathrm {arccoth}\left (a x \right )}}{\left (-a c x +c \right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(n*arccoth(a*x))/(-a*c*x+c)^(3/2),x)

[Out]

int(exp(n*arccoth(a*x))/(-a*c*x+c)^(3/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{2} \, n}}{{\left (-a c x + c\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arccoth(a*x))/(-a*c*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate(((a*x - 1)/(a*x + 1))^(1/2*n)/(-a*c*x + c)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\mathrm {e}}^{n\,\mathrm {acoth}\left (a\,x\right )}}{{\left (c-a\,c\,x\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(n*acoth(a*x))/(c - a*c*x)^(3/2),x)

[Out]

int(exp(n*acoth(a*x))/(c - a*c*x)^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {e^{n \operatorname {acoth}{\left (a x \right )}}}{\left (- c \left (a x - 1\right )\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*acoth(a*x))/(-a*c*x+c)**(3/2),x)

[Out]

Integral(exp(n*acoth(a*x))/(-c*(a*x - 1))**(3/2), x)

________________________________________________________________________________________