3.340 \(\int \frac {e^{-\coth ^{-1}(a x)} \sqrt {c-a c x}}{x^2} \, dx\)

Optimal. Leaf size=96 \[ \frac {\sqrt {\frac {1}{a x}+1} \sqrt {c-a c x}}{x \sqrt {1-\frac {1}{a x}}}-\frac {3 \sqrt {a} \sqrt {\frac {1}{x}} \sqrt {c-a c x} \sinh ^{-1}\left (\frac {\sqrt {\frac {1}{x}}}{\sqrt {a}}\right )}{\sqrt {1-\frac {1}{a x}}} \]

[Out]

(1+1/a/x)^(1/2)*(-a*c*x+c)^(1/2)/x/(1-1/a/x)^(1/2)-3*arcsinh((1/x)^(1/2)/a^(1/2))*a^(1/2)*(1/x)^(1/2)*(-a*c*x+
c)^(1/2)/(1-1/a/x)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.20, antiderivative size = 96, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {6176, 6181, 80, 54, 215} \[ \frac {\sqrt {\frac {1}{a x}+1} \sqrt {c-a c x}}{x \sqrt {1-\frac {1}{a x}}}-\frac {3 \sqrt {a} \sqrt {\frac {1}{x}} \sqrt {c-a c x} \sinh ^{-1}\left (\frac {\sqrt {\frac {1}{x}}}{\sqrt {a}}\right )}{\sqrt {1-\frac {1}{a x}}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[c - a*c*x]/(E^ArcCoth[a*x]*x^2),x]

[Out]

(Sqrt[1 + 1/(a*x)]*Sqrt[c - a*c*x])/(Sqrt[1 - 1/(a*x)]*x) - (3*Sqrt[a]*Sqrt[x^(-1)]*Sqrt[c - a*c*x]*ArcSinh[Sq
rt[x^(-1)]/Sqrt[a]])/Sqrt[1 - 1/(a*x)]

Rule 54

Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]), x_Symbol] :> Dist[2/Sqrt[b], Subst[Int[1/Sqrt[b*c -
 a*d + d*x^2], x], x, Sqrt[a + b*x]], x] /; FreeQ[{a, b, c, d}, x] && GtQ[b*c - a*d, 0] && GtQ[b, 0]

Rule 80

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 215

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[(Rt[b, 2]*x)/Sqrt[a]]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 6176

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_), x_Symbol] :> Dist[(c + d*x)^p/(x^p*(1 + c/(d
*x))^p), Int[u*x^p*(1 + c/(d*x))^p*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^
2, 0] &&  !IntegerQ[n/2] &&  !IntegerQ[p]

Rule 6181

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_))^(p_.)*(x_)^(m_), x_Symbol] :> -Dist[c^p*x^m*(1/x)^m, Sub
st[Int[((1 + (d*x)/c)^p*(1 + x/a)^(n/2))/(x^(m + 2)*(1 - x/a)^(n/2)), x], x, 1/x], x] /; FreeQ[{a, c, d, m, n,
 p}, x] && EqQ[c^2 - a^2*d^2, 0] &&  !IntegerQ[n/2] && (IntegerQ[p] || GtQ[c, 0]) &&  !IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {e^{-\coth ^{-1}(a x)} \sqrt {c-a c x}}{x^2} \, dx &=\frac {\sqrt {c-a c x} \int \frac {e^{-\coth ^{-1}(a x)} \sqrt {1-\frac {1}{a x}}}{x^{3/2}} \, dx}{\sqrt {1-\frac {1}{a x}} \sqrt {x}}\\ &=-\frac {\left (\sqrt {\frac {1}{x}} \sqrt {c-a c x}\right ) \operatorname {Subst}\left (\int \frac {1-\frac {x}{a}}{\sqrt {x} \sqrt {1+\frac {x}{a}}} \, dx,x,\frac {1}{x}\right )}{\sqrt {1-\frac {1}{a x}}}\\ &=\frac {\sqrt {1+\frac {1}{a x}} \sqrt {c-a c x}}{\sqrt {1-\frac {1}{a x}} x}-\frac {\left (3 \sqrt {\frac {1}{x}} \sqrt {c-a c x}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {x} \sqrt {1+\frac {x}{a}}} \, dx,x,\frac {1}{x}\right )}{2 \sqrt {1-\frac {1}{a x}}}\\ &=\frac {\sqrt {1+\frac {1}{a x}} \sqrt {c-a c x}}{\sqrt {1-\frac {1}{a x}} x}-\frac {\left (3 \sqrt {\frac {1}{x}} \sqrt {c-a c x}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1+\frac {x^2}{a}}} \, dx,x,\sqrt {\frac {1}{x}}\right )}{\sqrt {1-\frac {1}{a x}}}\\ &=\frac {\sqrt {1+\frac {1}{a x}} \sqrt {c-a c x}}{\sqrt {1-\frac {1}{a x}} x}-\frac {3 \sqrt {a} \sqrt {\frac {1}{x}} \sqrt {c-a c x} \sinh ^{-1}\left (\frac {\sqrt {\frac {1}{x}}}{\sqrt {a}}\right )}{\sqrt {1-\frac {1}{a x}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 78, normalized size = 0.81 \[ -\frac {\sqrt {\frac {1}{x}} \sqrt {c-a c x} \left (3 \sqrt {a} \sinh ^{-1}\left (\frac {\sqrt {\frac {1}{x}}}{\sqrt {a}}\right )-\sqrt {\frac {1}{x}} \sqrt {\frac {1}{a x}+1}\right )}{\sqrt {1-\frac {1}{a x}}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[c - a*c*x]/(E^ArcCoth[a*x]*x^2),x]

[Out]

-((Sqrt[x^(-1)]*Sqrt[c - a*c*x]*(-(Sqrt[1 + 1/(a*x)]*Sqrt[x^(-1)]) + 3*Sqrt[a]*ArcSinh[Sqrt[x^(-1)]/Sqrt[a]]))
/Sqrt[1 - 1/(a*x)])

________________________________________________________________________________________

fricas [A]  time = 0.70, size = 232, normalized size = 2.42 \[ \left [\frac {3 \, {\left (a^{2} x^{2} - a x\right )} \sqrt {-c} \log \left (-\frac {a^{2} c x^{2} + a c x + 2 \, \sqrt {-a c x + c} {\left (a x + 1\right )} \sqrt {-c} \sqrt {\frac {a x - 1}{a x + 1}} - 2 \, c}{a x^{2} - x}\right ) + 2 \, \sqrt {-a c x + c} {\left (a x + 1\right )} \sqrt {\frac {a x - 1}{a x + 1}}}{2 \, {\left (a x^{2} - x\right )}}, -\frac {3 \, {\left (a^{2} x^{2} - a x\right )} \sqrt {c} \arctan \left (\frac {\sqrt {-a c x + c} \sqrt {c} \sqrt {\frac {a x - 1}{a x + 1}}}{a c x - c}\right ) - \sqrt {-a c x + c} {\left (a x + 1\right )} \sqrt {\frac {a x - 1}{a x + 1}}}{a x^{2} - x}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*c*x+c)^(1/2)*((a*x-1)/(a*x+1))^(1/2)/x^2,x, algorithm="fricas")

[Out]

[1/2*(3*(a^2*x^2 - a*x)*sqrt(-c)*log(-(a^2*c*x^2 + a*c*x + 2*sqrt(-a*c*x + c)*(a*x + 1)*sqrt(-c)*sqrt((a*x - 1
)/(a*x + 1)) - 2*c)/(a*x^2 - x)) + 2*sqrt(-a*c*x + c)*(a*x + 1)*sqrt((a*x - 1)/(a*x + 1)))/(a*x^2 - x), -(3*(a
^2*x^2 - a*x)*sqrt(c)*arctan(sqrt(-a*c*x + c)*sqrt(c)*sqrt((a*x - 1)/(a*x + 1))/(a*c*x - c)) - sqrt(-a*c*x + c
)*(a*x + 1)*sqrt((a*x - 1)/(a*x + 1)))/(a*x^2 - x)]

________________________________________________________________________________________

giac [A]  time = 0.16, size = 48, normalized size = 0.50 \[ a {\left (\frac {3 \, \arctan \left (\frac {\sqrt {-a c x - c}}{\sqrt {c}}\right )}{\sqrt {c}} - \frac {\sqrt {-a c x - c}}{a c x}\right )} {\left | c \right |} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*c*x+c)^(1/2)*((a*x-1)/(a*x+1))^(1/2)/x^2,x, algorithm="giac")

[Out]

a*(3*arctan(sqrt(-a*c*x - c)/sqrt(c))/sqrt(c) - sqrt(-a*c*x - c)/(a*c*x))*abs(c)

________________________________________________________________________________________

maple [A]  time = 0.06, size = 92, normalized size = 0.96 \[ -\frac {\sqrt {\frac {a x -1}{a x +1}}\, \left (a x +1\right ) \sqrt {-c \left (a x -1\right )}\, \left (3 \arctan \left (\frac {\sqrt {-c \left (a x +1\right )}}{\sqrt {c}}\right ) x a c -\sqrt {-c \left (a x +1\right )}\, \sqrt {c}\right )}{\left (a x -1\right ) \sqrt {-c \left (a x +1\right )}\, x \sqrt {c}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-a*c*x+c)^(1/2)*((a*x-1)/(a*x+1))^(1/2)/x^2,x)

[Out]

-((a*x-1)/(a*x+1))^(1/2)*(a*x+1)*(-c*(a*x-1))^(1/2)*(3*arctan((-c*(a*x+1))^(1/2)/c^(1/2))*x*a*c-(-c*(a*x+1))^(
1/2)*c^(1/2))/(a*x-1)/(-c*(a*x+1))^(1/2)/x/c^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {-a c x + c} \sqrt {\frac {a x - 1}{a x + 1}}}{x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*c*x+c)^(1/2)*((a*x-1)/(a*x+1))^(1/2)/x^2,x, algorithm="maxima")

[Out]

integrate(sqrt(-a*c*x + c)*sqrt((a*x - 1)/(a*x + 1))/x^2, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\sqrt {c-a\,c\,x}\,\sqrt {\frac {a\,x-1}{a\,x+1}}}{x^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((c - a*c*x)^(1/2)*((a*x - 1)/(a*x + 1))^(1/2))/x^2,x)

[Out]

int(((c - a*c*x)^(1/2)*((a*x - 1)/(a*x + 1))^(1/2))/x^2, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {\frac {a x - 1}{a x + 1}} \sqrt {- c \left (a x - 1\right )}}{x^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*c*x+c)**(1/2)*((a*x-1)/(a*x+1))**(1/2)/x**2,x)

[Out]

Integral(sqrt((a*x - 1)/(a*x + 1))*sqrt(-c*(a*x - 1))/x**2, x)

________________________________________________________________________________________