3.331 \(\int \frac {e^{\coth ^{-1}(x)} x}{(1+x)^{3/2}} \, dx\)

Optimal. Leaf size=93 \[ \frac {2 \left (\frac {1}{x}+1\right )^{3/2} \sqrt {-\frac {1-x}{x}} x^2}{(x+1)^{3/2}}+\frac {\sqrt {2} \left (\frac {1}{x}+1\right )^{3/2} \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {\frac {1}{x}}}{\sqrt {-\frac {1-x}{x}}}\right )}{\left (\frac {1}{x}\right )^{3/2} (x+1)^{3/2}} \]

[Out]

(1/x+1)^(3/2)*arctan(2^(1/2)*(1/x)^(1/2)/((-1+x)/x)^(1/2))*2^(1/2)/(1/x)^(3/2)/(1+x)^(3/2)+2*(1/x+1)^(3/2)*x^2
*((-1+x)/x)^(1/2)/(1+x)^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.12, antiderivative size = 93, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.385, Rules used = {6176, 6181, 96, 93, 203} \[ \frac {2 \left (\frac {1}{x}+1\right )^{3/2} \sqrt {-\frac {1-x}{x}} x^2}{(x+1)^{3/2}}+\frac {\sqrt {2} \left (\frac {1}{x}+1\right )^{3/2} \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {\frac {1}{x}}}{\sqrt {-\frac {1-x}{x}}}\right )}{\left (\frac {1}{x}\right )^{3/2} (x+1)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(E^ArcCoth[x]*x)/(1 + x)^(3/2),x]

[Out]

(2*(1 + x^(-1))^(3/2)*Sqrt[-((1 - x)/x)]*x^2)/(1 + x)^(3/2) + (Sqrt[2]*(1 + x^(-1))^(3/2)*ArcTan[(Sqrt[2]*Sqrt
[x^(-1)])/Sqrt[-((1 - x)/x)]])/((x^(-1))^(3/2)*(1 + x)^(3/2))

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 96

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a +
 b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f)), x] + Dist[(a*d*f*(m + 1)
 + b*c*f*(n + 1) + b*d*e*(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*
x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[Simplify[m + n + p + 3], 0] && (LtQ[m, -1] || Sum
SimplerQ[m, 1])

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 6176

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_), x_Symbol] :> Dist[(c + d*x)^p/(x^p*(1 + c/(d
*x))^p), Int[u*x^p*(1 + c/(d*x))^p*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^
2, 0] &&  !IntegerQ[n/2] &&  !IntegerQ[p]

Rule 6181

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_))^(p_.)*(x_)^(m_), x_Symbol] :> -Dist[c^p*x^m*(1/x)^m, Sub
st[Int[((1 + (d*x)/c)^p*(1 + x/a)^(n/2))/(x^(m + 2)*(1 - x/a)^(n/2)), x], x, 1/x], x] /; FreeQ[{a, c, d, m, n,
 p}, x] && EqQ[c^2 - a^2*d^2, 0] &&  !IntegerQ[n/2] && (IntegerQ[p] || GtQ[c, 0]) &&  !IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {e^{\coth ^{-1}(x)} x}{(1+x)^{3/2}} \, dx &=\frac {\left (\left (1+\frac {1}{x}\right )^{3/2} x^{3/2}\right ) \int \frac {e^{\coth ^{-1}(x)}}{\left (1+\frac {1}{x}\right )^{3/2} \sqrt {x}} \, dx}{(1+x)^{3/2}}\\ &=-\frac {\left (1+\frac {1}{x}\right )^{3/2} \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-x} x^{3/2} (1+x)} \, dx,x,\frac {1}{x}\right )}{\left (\frac {1}{x}\right )^{3/2} (1+x)^{3/2}}\\ &=\frac {2 \left (1+\frac {1}{x}\right )^{3/2} \sqrt {-\frac {1-x}{x}} x^2}{(1+x)^{3/2}}+\frac {\left (1+\frac {1}{x}\right )^{3/2} \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-x} \sqrt {x} (1+x)} \, dx,x,\frac {1}{x}\right )}{\left (\frac {1}{x}\right )^{3/2} (1+x)^{3/2}}\\ &=\frac {2 \left (1+\frac {1}{x}\right )^{3/2} \sqrt {-\frac {1-x}{x}} x^2}{(1+x)^{3/2}}+\frac {\left (2 \left (1+\frac {1}{x}\right )^{3/2}\right ) \operatorname {Subst}\left (\int \frac {1}{1+2 x^2} \, dx,x,\frac {\sqrt {\frac {1}{x}}}{\sqrt {\frac {-1+x}{x}}}\right )}{\left (\frac {1}{x}\right )^{3/2} (1+x)^{3/2}}\\ &=\frac {2 \left (1+\frac {1}{x}\right )^{3/2} \sqrt {-\frac {1-x}{x}} x^2}{(1+x)^{3/2}}+\frac {\sqrt {2} \left (1+\frac {1}{x}\right )^{3/2} \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {\frac {1}{x}}}{\sqrt {-\frac {1-x}{x}}}\right )}{\left (\frac {1}{x}\right )^{3/2} (1+x)^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 65, normalized size = 0.70 \[ \frac {\sqrt {\frac {1}{x}+1} x \left (2 \sqrt {\frac {x-1}{x}}-\sqrt {2} \sqrt {\frac {1}{x}} \tan ^{-1}\left (\frac {\sqrt {\frac {x-1}{x^2}} x}{\sqrt {2}}\right )\right )}{\sqrt {x+1}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(E^ArcCoth[x]*x)/(1 + x)^(3/2),x]

[Out]

(Sqrt[1 + x^(-1)]*x*(2*Sqrt[(-1 + x)/x] - Sqrt[2]*Sqrt[x^(-1)]*ArcTan[(Sqrt[(-1 + x)/x^2]*x)/Sqrt[2]]))/Sqrt[1
 + x]

________________________________________________________________________________________

fricas [A]  time = 0.87, size = 46, normalized size = 0.49 \[ -\sqrt {2} \arctan \left (\frac {1}{2} \, \sqrt {2} \sqrt {x + 1} \sqrt {\frac {x - 1}{x + 1}}\right ) + 2 \, \sqrt {x + 1} \sqrt {\frac {x - 1}{x + 1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((-1+x)/(1+x))^(1/2)*x/(1+x)^(3/2),x, algorithm="fricas")

[Out]

-sqrt(2)*arctan(1/2*sqrt(2)*sqrt(x + 1)*sqrt((x - 1)/(x + 1))) + 2*sqrt(x + 1)*sqrt((x - 1)/(x + 1))

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: NotImplementedError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((-1+x)/(1+x))^(1/2)*x/(1+x)^(3/2),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError >> Unable to parse Giac output: 2*(sqrt(x-1)-atan(sqrt(x-1)/sqrt(2))/sqr
t(2)+(atan(i)-2*i)/sqrt(2))

________________________________________________________________________________________

maple [A]  time = 0.05, size = 47, normalized size = 0.51 \[ \frac {\sqrt {-1+x}\, \left (2 \sqrt {-1+x}-\sqrt {2}\, \arctan \left (\frac {\sqrt {-1+x}\, \sqrt {2}}{2}\right )\right )}{\sqrt {\frac {-1+x}{1+x}}\, \sqrt {1+x}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((-1+x)/(1+x))^(1/2)*x/(1+x)^(3/2),x)

[Out]

1/((-1+x)/(1+x))^(1/2)*(-1+x)^(1/2)/(1+x)^(1/2)*(2*(-1+x)^(1/2)-2^(1/2)*arctan(1/2*(-1+x)^(1/2)*2^(1/2)))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x}{{\left (x + 1\right )}^{\frac {3}{2}} \sqrt {\frac {x - 1}{x + 1}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((-1+x)/(1+x))^(1/2)*x/(1+x)^(3/2),x, algorithm="maxima")

[Out]

integrate(x/((x + 1)^(3/2)*sqrt((x - 1)/(x + 1))), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {x}{\sqrt {\frac {x-1}{x+1}}\,{\left (x+1\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(((x - 1)/(x + 1))^(1/2)*(x + 1)^(3/2)),x)

[Out]

int(x/(((x - 1)/(x + 1))^(1/2)*(x + 1)^(3/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x}{\sqrt {\frac {x - 1}{x + 1}} \left (x + 1\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((-1+x)/(1+x))**(1/2)*x/(1+x)**(3/2),x)

[Out]

Integral(x/(sqrt((x - 1)/(x + 1))*(x + 1)**(3/2)), x)

________________________________________________________________________________________