3.292 \(\int \frac {e^{\coth ^{-1}(x)}}{(1+x)^2} \, dx\)

Optimal. Leaf size=21 \[ \frac {\sqrt {\frac {x-1}{x}}}{\sqrt {\frac {1}{x}+1}} \]

[Out]

((-1+x)/x)^(1/2)/(1/x+1)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 21, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {6175, 6180, 37} \[ \frac {\sqrt {\frac {x-1}{x}}}{\sqrt {\frac {1}{x}+1}} \]

Antiderivative was successfully verified.

[In]

Int[E^ArcCoth[x]/(1 + x)^2,x]

[Out]

Sqrt[(-1 + x)/x]/Sqrt[1 + x^(-1)]

Rule 37

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n +
1))/((b*c - a*d)*(m + 1)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + 2, 0] && NeQ
[m, -1]

Rule 6175

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Dist[d^p, Int[u*x^p*(1 + c/(d*
x))^p*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c^2 - d^2, 0] &&  !IntegerQ[n/2] && Inte
gerQ[p]

Rule 6180

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_))^(p_.)*(x_)^(m_.), x_Symbol] :> -Dist[c^p, Subst[Int[((1
+ (d*x)/c)^p*(1 + x/a)^(n/2))/(x^(m + 2)*(1 - x/a)^(n/2)), x], x, 1/x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ
[c^2 - a^2*d^2, 0] &&  !IntegerQ[n/2] && (IntegerQ[p] || GtQ[c, 0]) && IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {e^{\coth ^{-1}(x)}}{(1+x)^2} \, dx &=\int \frac {e^{\coth ^{-1}(x)}}{\left (1+\frac {1}{x}\right )^2 x^2} \, dx\\ &=-\operatorname {Subst}\left (\int \frac {1}{\sqrt {1-x} (1+x)^{3/2}} \, dx,x,\frac {1}{x}\right )\\ &=\frac {\sqrt {\frac {-1+x}{x}}}{\sqrt {1+\frac {1}{x}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 18, normalized size = 0.86 \[ \frac {\sqrt {1-\frac {1}{x^2}} x}{x+1} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^ArcCoth[x]/(1 + x)^2,x]

[Out]

(Sqrt[1 - x^(-2)]*x)/(1 + x)

________________________________________________________________________________________

fricas [A]  time = 0.64, size = 11, normalized size = 0.52 \[ \sqrt {\frac {x - 1}{x + 1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((-1+x)/(1+x))^(1/2)/(1+x)^2,x, algorithm="fricas")

[Out]

sqrt((x - 1)/(x + 1))

________________________________________________________________________________________

giac [A]  time = 0.13, size = 11, normalized size = 0.52 \[ \sqrt {\frac {x - 1}{x + 1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((-1+x)/(1+x))^(1/2)/(1+x)^2,x, algorithm="giac")

[Out]

sqrt((x - 1)/(x + 1))

________________________________________________________________________________________

maple [A]  time = 0.04, size = 21, normalized size = 1.00 \[ \frac {-1+x}{\left (1+x \right ) \sqrt {\frac {-1+x}{1+x}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((-1+x)/(1+x))^(1/2)/(1+x)^2,x)

[Out]

1/(1+x)*(-1+x)/((-1+x)/(1+x))^(1/2)

________________________________________________________________________________________

maxima [A]  time = 0.31, size = 11, normalized size = 0.52 \[ \sqrt {\frac {x - 1}{x + 1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((-1+x)/(1+x))^(1/2)/(1+x)^2,x, algorithm="maxima")

[Out]

sqrt((x - 1)/(x + 1))

________________________________________________________________________________________

mupad [B]  time = 0.18, size = 11, normalized size = 0.52 \[ \sqrt {1-\frac {2}{x+1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(((x - 1)/(x + 1))^(1/2)*(x + 1)^2),x)

[Out]

(1 - 2/(x + 1))^(1/2)

________________________________________________________________________________________

sympy [A]  time = 5.38, size = 8, normalized size = 0.38 \[ \sqrt {\frac {x - 1}{x + 1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((-1+x)/(1+x))**(1/2)/(1+x)**2,x)

[Out]

sqrt((x - 1)/(x + 1))

________________________________________________________________________________________