3.286 \(\int e^{\coth ^{-1}(x)} (1-x)^2 \, dx\)

Optimal. Leaf size=53 \[ -\frac {1}{2} \sqrt {1-\frac {1}{x^2}} x^2+\frac {1}{2} \tanh ^{-1}\left (\sqrt {1-\frac {1}{x^2}}\right )+\frac {1}{3} \left (1-\frac {1}{x^2}\right )^{3/2} x^3 \]

[Out]

1/3*(1-1/x^2)^(3/2)*x^3+1/2*arctanh((1-1/x^2)^(1/2))-1/2*x^2*(1-1/x^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.09, antiderivative size = 53, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.583, Rules used = {6175, 6178, 807, 266, 47, 63, 206} \[ \frac {1}{3} \left (1-\frac {1}{x^2}\right )^{3/2} x^3-\frac {1}{2} \sqrt {1-\frac {1}{x^2}} x^2+\frac {1}{2} \tanh ^{-1}\left (\sqrt {1-\frac {1}{x^2}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[E^ArcCoth[x]*(1 - x)^2,x]

[Out]

-(Sqrt[1 - x^(-2)]*x^2)/2 + ((1 - x^(-2))^(3/2)*x^3)/3 + ArcTanh[Sqrt[1 - x^(-2)]]/2

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + 1)), x] - Dist[(d*n)/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 807

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> -Simp[((e*f - d*g
)*(d + e*x)^(m + 1)*(a + c*x^2)^(p + 1))/(2*(p + 1)*(c*d^2 + a*e^2)), x] + Dist[(c*d*f + a*e*g)/(c*d^2 + a*e^2
), Int[(d + e*x)^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0]
&& EqQ[Simplify[m + 2*p + 3], 0]

Rule 6175

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Dist[d^p, Int[u*x^p*(1 + c/(d*
x))^p*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c^2 - d^2, 0] &&  !IntegerQ[n/2] && Inte
gerQ[p]

Rule 6178

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_))^(p_.)*(x_)^(m_.), x_Symbol] :> -Dist[c^n, Subst[Int[((c
+ d*x)^(p - n)*(1 - x^2/a^2)^(n/2))/x^(m + 2), x], x, 1/x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[c + a*d, 0] &&
 IntegerQ[(n - 1)/2] && IntegerQ[m] && (IntegerQ[p] || EqQ[p, n/2] || EqQ[p, n/2 + 1] || LtQ[-5, m, -1]) && In
tegerQ[2*p]

Rubi steps

\begin {align*} \int e^{\coth ^{-1}(x)} (1-x)^2 \, dx &=\int e^{\coth ^{-1}(x)} \left (1-\frac {1}{x}\right )^2 x^2 \, dx\\ &=-\operatorname {Subst}\left (\int \frac {(1-x) \sqrt {1-x^2}}{x^4} \, dx,x,\frac {1}{x}\right )\\ &=\frac {1}{3} \left (1-\frac {1}{x^2}\right )^{3/2} x^3+\operatorname {Subst}\left (\int \frac {\sqrt {1-x^2}}{x^3} \, dx,x,\frac {1}{x}\right )\\ &=\frac {1}{3} \left (1-\frac {1}{x^2}\right )^{3/2} x^3+\frac {1}{2} \operatorname {Subst}\left (\int \frac {\sqrt {1-x}}{x^2} \, dx,x,\frac {1}{x^2}\right )\\ &=-\frac {1}{2} \sqrt {1-\frac {1}{x^2}} x^2+\frac {1}{3} \left (1-\frac {1}{x^2}\right )^{3/2} x^3-\frac {1}{4} \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-x} x} \, dx,x,\frac {1}{x^2}\right )\\ &=-\frac {1}{2} \sqrt {1-\frac {1}{x^2}} x^2+\frac {1}{3} \left (1-\frac {1}{x^2}\right )^{3/2} x^3+\frac {1}{2} \operatorname {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\sqrt {1-\frac {1}{x^2}}\right )\\ &=-\frac {1}{2} \sqrt {1-\frac {1}{x^2}} x^2+\frac {1}{3} \left (1-\frac {1}{x^2}\right )^{3/2} x^3+\frac {1}{2} \tanh ^{-1}\left (\sqrt {1-\frac {1}{x^2}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 47, normalized size = 0.89 \[ \frac {1}{6} \sqrt {1-\frac {1}{x^2}} x \left (2 x^2-3 x-2\right )+\frac {1}{2} \log \left (\left (\sqrt {1-\frac {1}{x^2}}+1\right ) x\right ) \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^ArcCoth[x]*(1 - x)^2,x]

[Out]

(Sqrt[1 - x^(-2)]*x*(-2 - 3*x + 2*x^2))/6 + Log[(1 + Sqrt[1 - x^(-2)])*x]/2

________________________________________________________________________________________

fricas [A]  time = 0.55, size = 61, normalized size = 1.15 \[ \frac {1}{6} \, {\left (2 \, x^{3} - x^{2} - 5 \, x - 2\right )} \sqrt {\frac {x - 1}{x + 1}} + \frac {1}{2} \, \log \left (\sqrt {\frac {x - 1}{x + 1}} + 1\right ) - \frac {1}{2} \, \log \left (\sqrt {\frac {x - 1}{x + 1}} - 1\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((-1+x)/(1+x))^(1/2)*(1-x)^2,x, algorithm="fricas")

[Out]

1/6*(2*x^3 - x^2 - 5*x - 2)*sqrt((x - 1)/(x + 1)) + 1/2*log(sqrt((x - 1)/(x + 1)) + 1) - 1/2*log(sqrt((x - 1)/
(x + 1)) - 1)

________________________________________________________________________________________

giac [B]  time = 0.15, size = 107, normalized size = 2.02 \[ -\frac {\frac {8 \, {\left (x - 1\right )} \sqrt {\frac {x - 1}{x + 1}}}{x + 1} + \frac {3 \, {\left (x - 1\right )}^{2} \sqrt {\frac {x - 1}{x + 1}}}{{\left (x + 1\right )}^{2}} - 3 \, \sqrt {\frac {x - 1}{x + 1}}}{3 \, {\left (\frac {x - 1}{x + 1} - 1\right )}^{3}} + \frac {1}{2} \, \log \left (\sqrt {\frac {x - 1}{x + 1}} + 1\right ) - \frac {1}{2} \, \log \left ({\left | \sqrt {\frac {x - 1}{x + 1}} - 1 \right |}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((-1+x)/(1+x))^(1/2)*(1-x)^2,x, algorithm="giac")

[Out]

-1/3*(8*(x - 1)*sqrt((x - 1)/(x + 1))/(x + 1) + 3*(x - 1)^2*sqrt((x - 1)/(x + 1))/(x + 1)^2 - 3*sqrt((x - 1)/(
x + 1)))/((x - 1)/(x + 1) - 1)^3 + 1/2*log(sqrt((x - 1)/(x + 1)) + 1) - 1/2*log(abs(sqrt((x - 1)/(x + 1)) - 1)
)

________________________________________________________________________________________

maple [A]  time = 0.04, size = 60, normalized size = 1.13 \[ \frac {\left (-1+x \right ) \left (2 \left (\left (1+x \right ) \left (-1+x \right )\right )^{\frac {3}{2}}-3 x \sqrt {x^{2}-1}+3 \ln \left (x +\sqrt {x^{2}-1}\right )\right )}{6 \sqrt {\frac {-1+x}{1+x}}\, \sqrt {\left (1+x \right ) \left (-1+x \right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((-1+x)/(1+x))^(1/2)*(1-x)^2,x)

[Out]

1/6*(-1+x)*(2*((1+x)*(-1+x))^(3/2)-3*x*(x^2-1)^(1/2)+3*ln(x+(x^2-1)^(1/2)))/((-1+x)/(1+x))^(1/2)/((1+x)*(-1+x)
)^(1/2)

________________________________________________________________________________________

maxima [B]  time = 0.31, size = 112, normalized size = 2.11 \[ -\frac {3 \, \left (\frac {x - 1}{x + 1}\right )^{\frac {5}{2}} + 8 \, \left (\frac {x - 1}{x + 1}\right )^{\frac {3}{2}} - 3 \, \sqrt {\frac {x - 1}{x + 1}}}{3 \, {\left (\frac {3 \, {\left (x - 1\right )}}{x + 1} - \frac {3 \, {\left (x - 1\right )}^{2}}{{\left (x + 1\right )}^{2}} + \frac {{\left (x - 1\right )}^{3}}{{\left (x + 1\right )}^{3}} - 1\right )}} + \frac {1}{2} \, \log \left (\sqrt {\frac {x - 1}{x + 1}} + 1\right ) - \frac {1}{2} \, \log \left (\sqrt {\frac {x - 1}{x + 1}} - 1\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((-1+x)/(1+x))^(1/2)*(1-x)^2,x, algorithm="maxima")

[Out]

-1/3*(3*((x - 1)/(x + 1))^(5/2) + 8*((x - 1)/(x + 1))^(3/2) - 3*sqrt((x - 1)/(x + 1)))/(3*(x - 1)/(x + 1) - 3*
(x - 1)^2/(x + 1)^2 + (x - 1)^3/(x + 1)^3 - 1) + 1/2*log(sqrt((x - 1)/(x + 1)) + 1) - 1/2*log(sqrt((x - 1)/(x
+ 1)) - 1)

________________________________________________________________________________________

mupad [B]  time = 1.18, size = 90, normalized size = 1.70 \[ \mathrm {atanh}\left (\sqrt {\frac {x-1}{x+1}}\right )-\frac {\frac {8\,{\left (\frac {x-1}{x+1}\right )}^{3/2}}{3}-\sqrt {\frac {x-1}{x+1}}+{\left (\frac {x-1}{x+1}\right )}^{5/2}}{\frac {3\,\left (x-1\right )}{x+1}-\frac {3\,{\left (x-1\right )}^2}{{\left (x+1\right )}^2}+\frac {{\left (x-1\right )}^3}{{\left (x+1\right )}^3}-1} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x - 1)^2/((x - 1)/(x + 1))^(1/2),x)

[Out]

atanh(((x - 1)/(x + 1))^(1/2)) - ((8*((x - 1)/(x + 1))^(3/2))/3 - ((x - 1)/(x + 1))^(1/2) + ((x - 1)/(x + 1))^
(5/2))/((3*(x - 1))/(x + 1) - (3*(x - 1)^2)/(x + 1)^2 + (x - 1)^3/(x + 1)^3 - 1)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (x - 1\right )^{2}}{\sqrt {\frac {x - 1}{x + 1}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((-1+x)/(1+x))**(1/2)*(1-x)**2,x)

[Out]

Integral((x - 1)**2/sqrt((x - 1)/(x + 1)), x)

________________________________________________________________________________________