3.271 \(\int e^{-3 \coth ^{-1}(a x)} (c-a c x)^{7/2} \, dx\)

Optimal. Leaf size=311 \[ \frac {11776 (c-a c x)^{7/2}}{63 a^5 x^4 \left (1-\frac {1}{a x}\right )^{7/2} \sqrt {\frac {1}{a x}+1}}+\frac {2 x \left (a-\frac {1}{x}\right )^5 (c-a c x)^{7/2}}{9 a^5 \left (1-\frac {1}{a x}\right )^{7/2} \sqrt {\frac {1}{a x}+1}}-\frac {40 \left (a-\frac {1}{x}\right )^4 (c-a c x)^{7/2}}{63 a^5 \left (1-\frac {1}{a x}\right )^{7/2} \sqrt {\frac {1}{a x}+1}}+\frac {128 \left (a-\frac {1}{x}\right )^3 (c-a c x)^{7/2}}{63 a^5 x \left (1-\frac {1}{a x}\right )^{7/2} \sqrt {\frac {1}{a x}+1}}+\frac {5120 (c-a c x)^{7/2}}{63 a^4 x^3 \left (1-\frac {1}{a x}\right )^{7/2} \sqrt {\frac {1}{a x}+1}}-\frac {512 (c-a c x)^{7/2}}{63 a^3 x^2 \left (1-\frac {1}{a x}\right )^{7/2} \sqrt {\frac {1}{a x}+1}} \]

[Out]

-40/63*(a-1/x)^4*(-a*c*x+c)^(7/2)/a^5/(1-1/a/x)^(7/2)/(1+1/a/x)^(1/2)+11776/63*(-a*c*x+c)^(7/2)/a^5/(1-1/a/x)^
(7/2)/x^4/(1+1/a/x)^(1/2)+5120/63*(-a*c*x+c)^(7/2)/a^4/(1-1/a/x)^(7/2)/x^3/(1+1/a/x)^(1/2)-512/63*(-a*c*x+c)^(
7/2)/a^3/(1-1/a/x)^(7/2)/x^2/(1+1/a/x)^(1/2)+128/63*(a-1/x)^3*(-a*c*x+c)^(7/2)/a^5/(1-1/a/x)^(7/2)/x/(1+1/a/x)
^(1/2)+2/9*(a-1/x)^5*x*(-a*c*x+c)^(7/2)/a^5/(1-1/a/x)^(7/2)/(1+1/a/x)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.24, antiderivative size = 311, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {6176, 6181, 94, 89, 78, 37} \[ -\frac {512 (c-a c x)^{7/2}}{63 a^3 x^2 \left (1-\frac {1}{a x}\right )^{7/2} \sqrt {\frac {1}{a x}+1}}+\frac {5120 (c-a c x)^{7/2}}{63 a^4 x^3 \left (1-\frac {1}{a x}\right )^{7/2} \sqrt {\frac {1}{a x}+1}}+\frac {11776 (c-a c x)^{7/2}}{63 a^5 x^4 \left (1-\frac {1}{a x}\right )^{7/2} \sqrt {\frac {1}{a x}+1}}+\frac {2 x \left (a-\frac {1}{x}\right )^5 (c-a c x)^{7/2}}{9 a^5 \left (1-\frac {1}{a x}\right )^{7/2} \sqrt {\frac {1}{a x}+1}}-\frac {40 \left (a-\frac {1}{x}\right )^4 (c-a c x)^{7/2}}{63 a^5 \left (1-\frac {1}{a x}\right )^{7/2} \sqrt {\frac {1}{a x}+1}}+\frac {128 \left (a-\frac {1}{x}\right )^3 (c-a c x)^{7/2}}{63 a^5 x \left (1-\frac {1}{a x}\right )^{7/2} \sqrt {\frac {1}{a x}+1}} \]

Antiderivative was successfully verified.

[In]

Int[(c - a*c*x)^(7/2)/E^(3*ArcCoth[a*x]),x]

[Out]

(-40*(a - x^(-1))^4*(c - a*c*x)^(7/2))/(63*a^5*(1 - 1/(a*x))^(7/2)*Sqrt[1 + 1/(a*x)]) + (11776*(c - a*c*x)^(7/
2))/(63*a^5*(1 - 1/(a*x))^(7/2)*Sqrt[1 + 1/(a*x)]*x^4) + (5120*(c - a*c*x)^(7/2))/(63*a^4*(1 - 1/(a*x))^(7/2)*
Sqrt[1 + 1/(a*x)]*x^3) - (512*(c - a*c*x)^(7/2))/(63*a^3*(1 - 1/(a*x))^(7/2)*Sqrt[1 + 1/(a*x)]*x^2) + (128*(a
- x^(-1))^3*(c - a*c*x)^(7/2))/(63*a^5*(1 - 1/(a*x))^(7/2)*Sqrt[1 + 1/(a*x)]*x) + (2*(a - x^(-1))^5*x*(c - a*c
*x)^(7/2))/(9*a^5*(1 - 1/(a*x))^(7/2)*Sqrt[1 + 1/(a*x)])

Rule 37

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n +
1))/((b*c - a*d)*(m + 1)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + 2, 0] && NeQ
[m, -1]

Rule 78

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> -Simp[((b*e - a*f
)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(f*(p + 1)*(c*f - d*e)), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1)
+ c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f,
 n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ
[p, n]))))

Rule 89

Int[((a_.) + (b_.)*(x_))^2*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((b*c - a*
d)^2*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d^2*(d*e - c*f)*(n + 1)), x] - Dist[1/(d^2*(d*e - c*f)*(n + 1)), In
t[(c + d*x)^(n + 1)*(e + f*x)^p*Simp[a^2*d^2*f*(n + p + 2) + b^2*c*(d*e*(n + 1) + c*f*(p + 1)) - 2*a*b*d*(d*e*
(n + 1) + c*f*(p + 1)) - b^2*d*(d*e - c*f)*(n + 1)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && (LtQ
[n, -1] || (EqQ[n + p + 3, 0] && NeQ[n, -1] && (SumSimplerQ[n, 1] ||  !SumSimplerQ[p, 1])))

Rule 94

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/((m + 1)*(b*e - a*f)), x] - Dist[(n*(d*e - c*f))/((m + 1)*(b*e - a*
f)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[
m + n + p + 2, 0] && GtQ[n, 0] &&  !(SumSimplerQ[p, 1] &&  !SumSimplerQ[m, 1])

Rule 6176

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_), x_Symbol] :> Dist[(c + d*x)^p/(x^p*(1 + c/(d
*x))^p), Int[u*x^p*(1 + c/(d*x))^p*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^
2, 0] &&  !IntegerQ[n/2] &&  !IntegerQ[p]

Rule 6181

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_))^(p_.)*(x_)^(m_), x_Symbol] :> -Dist[c^p*x^m*(1/x)^m, Sub
st[Int[((1 + (d*x)/c)^p*(1 + x/a)^(n/2))/(x^(m + 2)*(1 - x/a)^(n/2)), x], x, 1/x], x] /; FreeQ[{a, c, d, m, n,
 p}, x] && EqQ[c^2 - a^2*d^2, 0] &&  !IntegerQ[n/2] && (IntegerQ[p] || GtQ[c, 0]) &&  !IntegerQ[m]

Rubi steps

\begin {align*} \int e^{-3 \coth ^{-1}(a x)} (c-a c x)^{7/2} \, dx &=\frac {(c-a c x)^{7/2} \int e^{-3 \coth ^{-1}(a x)} \left (1-\frac {1}{a x}\right )^{7/2} x^{7/2} \, dx}{\left (1-\frac {1}{a x}\right )^{7/2} x^{7/2}}\\ &=-\frac {\left (\left (\frac {1}{x}\right )^{7/2} (c-a c x)^{7/2}\right ) \operatorname {Subst}\left (\int \frac {\left (1-\frac {x}{a}\right )^5}{x^{11/2} \left (1+\frac {x}{a}\right )^{3/2}} \, dx,x,\frac {1}{x}\right )}{\left (1-\frac {1}{a x}\right )^{7/2}}\\ &=\frac {2 \left (a-\frac {1}{x}\right )^5 x (c-a c x)^{7/2}}{9 a^5 \left (1-\frac {1}{a x}\right )^{7/2} \sqrt {1+\frac {1}{a x}}}+\frac {\left (20 \left (\frac {1}{x}\right )^{7/2} (c-a c x)^{7/2}\right ) \operatorname {Subst}\left (\int \frac {\left (1-\frac {x}{a}\right )^4}{x^{9/2} \left (1+\frac {x}{a}\right )^{3/2}} \, dx,x,\frac {1}{x}\right )}{9 a \left (1-\frac {1}{a x}\right )^{7/2}}\\ &=-\frac {40 \left (a-\frac {1}{x}\right )^4 (c-a c x)^{7/2}}{63 a^5 \left (1-\frac {1}{a x}\right )^{7/2} \sqrt {1+\frac {1}{a x}}}+\frac {2 \left (a-\frac {1}{x}\right )^5 x (c-a c x)^{7/2}}{9 a^5 \left (1-\frac {1}{a x}\right )^{7/2} \sqrt {1+\frac {1}{a x}}}-\frac {\left (320 \left (\frac {1}{x}\right )^{7/2} (c-a c x)^{7/2}\right ) \operatorname {Subst}\left (\int \frac {\left (1-\frac {x}{a}\right )^3}{x^{7/2} \left (1+\frac {x}{a}\right )^{3/2}} \, dx,x,\frac {1}{x}\right )}{63 a^2 \left (1-\frac {1}{a x}\right )^{7/2}}\\ &=-\frac {40 \left (a-\frac {1}{x}\right )^4 (c-a c x)^{7/2}}{63 a^5 \left (1-\frac {1}{a x}\right )^{7/2} \sqrt {1+\frac {1}{a x}}}+\frac {128 \left (a-\frac {1}{x}\right )^3 (c-a c x)^{7/2}}{63 a^5 \left (1-\frac {1}{a x}\right )^{7/2} \sqrt {1+\frac {1}{a x}} x}+\frac {2 \left (a-\frac {1}{x}\right )^5 x (c-a c x)^{7/2}}{9 a^5 \left (1-\frac {1}{a x}\right )^{7/2} \sqrt {1+\frac {1}{a x}}}+\frac {\left (256 \left (\frac {1}{x}\right )^{7/2} (c-a c x)^{7/2}\right ) \operatorname {Subst}\left (\int \frac {\left (1-\frac {x}{a}\right )^2}{x^{5/2} \left (1+\frac {x}{a}\right )^{3/2}} \, dx,x,\frac {1}{x}\right )}{21 a^3 \left (1-\frac {1}{a x}\right )^{7/2}}\\ &=-\frac {40 \left (a-\frac {1}{x}\right )^4 (c-a c x)^{7/2}}{63 a^5 \left (1-\frac {1}{a x}\right )^{7/2} \sqrt {1+\frac {1}{a x}}}-\frac {512 (c-a c x)^{7/2}}{63 a^3 \left (1-\frac {1}{a x}\right )^{7/2} \sqrt {1+\frac {1}{a x}} x^2}+\frac {128 \left (a-\frac {1}{x}\right )^3 (c-a c x)^{7/2}}{63 a^5 \left (1-\frac {1}{a x}\right )^{7/2} \sqrt {1+\frac {1}{a x}} x}+\frac {2 \left (a-\frac {1}{x}\right )^5 x (c-a c x)^{7/2}}{9 a^5 \left (1-\frac {1}{a x}\right )^{7/2} \sqrt {1+\frac {1}{a x}}}+\frac {\left (512 \left (\frac {1}{x}\right )^{7/2} (c-a c x)^{7/2}\right ) \operatorname {Subst}\left (\int \frac {-\frac {5}{a}+\frac {3 x}{2 a^2}}{x^{3/2} \left (1+\frac {x}{a}\right )^{3/2}} \, dx,x,\frac {1}{x}\right )}{63 a^3 \left (1-\frac {1}{a x}\right )^{7/2}}\\ &=-\frac {40 \left (a-\frac {1}{x}\right )^4 (c-a c x)^{7/2}}{63 a^5 \left (1-\frac {1}{a x}\right )^{7/2} \sqrt {1+\frac {1}{a x}}}+\frac {5120 (c-a c x)^{7/2}}{63 a^4 \left (1-\frac {1}{a x}\right )^{7/2} \sqrt {1+\frac {1}{a x}} x^3}-\frac {512 (c-a c x)^{7/2}}{63 a^3 \left (1-\frac {1}{a x}\right )^{7/2} \sqrt {1+\frac {1}{a x}} x^2}+\frac {128 \left (a-\frac {1}{x}\right )^3 (c-a c x)^{7/2}}{63 a^5 \left (1-\frac {1}{a x}\right )^{7/2} \sqrt {1+\frac {1}{a x}} x}+\frac {2 \left (a-\frac {1}{x}\right )^5 x (c-a c x)^{7/2}}{9 a^5 \left (1-\frac {1}{a x}\right )^{7/2} \sqrt {1+\frac {1}{a x}}}+\frac {\left (5888 \left (\frac {1}{x}\right )^{7/2} (c-a c x)^{7/2}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {x} \left (1+\frac {x}{a}\right )^{3/2}} \, dx,x,\frac {1}{x}\right )}{63 a^5 \left (1-\frac {1}{a x}\right )^{7/2}}\\ &=-\frac {40 \left (a-\frac {1}{x}\right )^4 (c-a c x)^{7/2}}{63 a^5 \left (1-\frac {1}{a x}\right )^{7/2} \sqrt {1+\frac {1}{a x}}}+\frac {11776 (c-a c x)^{7/2}}{63 a^5 \left (1-\frac {1}{a x}\right )^{7/2} \sqrt {1+\frac {1}{a x}} x^4}+\frac {5120 (c-a c x)^{7/2}}{63 a^4 \left (1-\frac {1}{a x}\right )^{7/2} \sqrt {1+\frac {1}{a x}} x^3}-\frac {512 (c-a c x)^{7/2}}{63 a^3 \left (1-\frac {1}{a x}\right )^{7/2} \sqrt {1+\frac {1}{a x}} x^2}+\frac {128 \left (a-\frac {1}{x}\right )^3 (c-a c x)^{7/2}}{63 a^5 \left (1-\frac {1}{a x}\right )^{7/2} \sqrt {1+\frac {1}{a x}} x}+\frac {2 \left (a-\frac {1}{x}\right )^5 x (c-a c x)^{7/2}}{9 a^5 \left (1-\frac {1}{a x}\right )^{7/2} \sqrt {1+\frac {1}{a x}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 76, normalized size = 0.24 \[ -\frac {2 c^3 \left (7 a^5 x^5-55 a^4 x^4+214 a^3 x^3-638 a^2 x^2+2867 a x+5797\right ) \sqrt {c-a c x}}{63 a^2 x \sqrt {1-\frac {1}{a^2 x^2}}} \]

Antiderivative was successfully verified.

[In]

Integrate[(c - a*c*x)^(7/2)/E^(3*ArcCoth[a*x]),x]

[Out]

(-2*c^3*Sqrt[c - a*c*x]*(5797 + 2867*a*x - 638*a^2*x^2 + 214*a^3*x^3 - 55*a^4*x^4 + 7*a^5*x^5))/(63*a^2*Sqrt[1
 - 1/(a^2*x^2)]*x)

________________________________________________________________________________________

fricas [A]  time = 0.71, size = 94, normalized size = 0.30 \[ -\frac {2 \, {\left (7 \, a^{5} c^{3} x^{5} - 55 \, a^{4} c^{3} x^{4} + 214 \, a^{3} c^{3} x^{3} - 638 \, a^{2} c^{3} x^{2} + 2867 \, a c^{3} x + 5797 \, c^{3}\right )} \sqrt {-a c x + c} \sqrt {\frac {a x - 1}{a x + 1}}}{63 \, {\left (a^{2} x - a\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*c*x+c)^(7/2)*((a*x-1)/(a*x+1))^(3/2),x, algorithm="fricas")

[Out]

-2/63*(7*a^5*c^3*x^5 - 55*a^4*c^3*x^4 + 214*a^3*c^3*x^3 - 638*a^2*c^3*x^2 + 2867*a*c^3*x + 5797*c^3)*sqrt(-a*c
*x + c)*sqrt((a*x - 1)/(a*x + 1))/(a^2*x - a)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*c*x+c)^(7/2)*((a*x-1)/(a*x+1))^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Warn
ing, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Check [ab
s(a*x+1)]sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

maple [A]  time = 0.04, size = 80, normalized size = 0.26 \[ \frac {2 \left (a x +1\right ) \left (7 x^{5} a^{5}-55 x^{4} a^{4}+214 x^{3} a^{3}-638 a^{2} x^{2}+2867 a x +5797\right ) \left (-a c x +c \right )^{\frac {7}{2}} \left (\frac {a x -1}{a x +1}\right )^{\frac {3}{2}}}{63 a \left (a x -1\right )^{5}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-a*c*x+c)^(7/2)*((a*x-1)/(a*x+1))^(3/2),x)

[Out]

2/63*(a*x+1)*(7*a^5*x^5-55*a^4*x^4+214*a^3*x^3-638*a^2*x^2+2867*a*x+5797)*(-a*c*x+c)^(7/2)*((a*x-1)/(a*x+1))^(
3/2)/a/(a*x-1)^5

________________________________________________________________________________________

maxima [A]  time = 0.34, size = 136, normalized size = 0.44 \[ -\frac {2 \, {\left (7 \, a^{6} \sqrt {-c} c^{3} x^{6} - 48 \, a^{5} \sqrt {-c} c^{3} x^{5} + 159 \, a^{4} \sqrt {-c} c^{3} x^{4} - 424 \, a^{3} \sqrt {-c} c^{3} x^{3} + 2229 \, a^{2} \sqrt {-c} c^{3} x^{2} + 8664 \, a \sqrt {-c} c^{3} x + 5797 \, \sqrt {-c} c^{3}\right )} {\left (a x - 1\right )}^{2}}{63 \, {\left (a^{3} x^{2} - 2 \, a^{2} x + a\right )} {\left (a x + 1\right )}^{\frac {3}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*c*x+c)^(7/2)*((a*x-1)/(a*x+1))^(3/2),x, algorithm="maxima")

[Out]

-2/63*(7*a^6*sqrt(-c)*c^3*x^6 - 48*a^5*sqrt(-c)*c^3*x^5 + 159*a^4*sqrt(-c)*c^3*x^4 - 424*a^3*sqrt(-c)*c^3*x^3
+ 2229*a^2*sqrt(-c)*c^3*x^2 + 8664*a*sqrt(-c)*c^3*x + 5797*sqrt(-c)*c^3)*(a*x - 1)^2/((a^3*x^2 - 2*a^2*x + a)*
(a*x + 1)^(3/2))

________________________________________________________________________________________

mupad [B]  time = 1.41, size = 102, normalized size = 0.33 \[ -\frac {2\,c^3\,\sqrt {c-a\,c\,x}\,\sqrt {\frac {a\,x-1}{a\,x+1}}\,\left (7\,a^4\,x^4-48\,a^3\,x^3+166\,a^2\,x^2-472\,a\,x+2395\right )}{63\,a}-\frac {16384\,c^3\,\sqrt {c-a\,c\,x}\,\sqrt {\frac {a\,x-1}{a\,x+1}}}{63\,a\,\left (a\,x-1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c - a*c*x)^(7/2)*((a*x - 1)/(a*x + 1))^(3/2),x)

[Out]

- (2*c^3*(c - a*c*x)^(1/2)*((a*x - 1)/(a*x + 1))^(1/2)*(166*a^2*x^2 - 472*a*x - 48*a^3*x^3 + 7*a^4*x^4 + 2395)
)/(63*a) - (16384*c^3*(c - a*c*x)^(1/2)*((a*x - 1)/(a*x + 1))^(1/2))/(63*a*(a*x - 1))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*c*x+c)**(7/2)*((a*x-1)/(a*x+1))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________