3.253 \(\int e^{-\coth ^{-1}(a x)} (c-a c x)^{7/2} \, dx\)

Optimal. Leaf size=161 \[ \frac {4096 c^4 x \sqrt {1-\frac {1}{a^2 x^2}}}{315 \sqrt {c-a c x}}+\frac {1024}{315} c^3 x \sqrt {1-\frac {1}{a^2 x^2}} \sqrt {c-a c x}+\frac {128}{105} c^2 x \sqrt {1-\frac {1}{a^2 x^2}} (c-a c x)^{3/2}+\frac {32}{63} c x \sqrt {1-\frac {1}{a^2 x^2}} (c-a c x)^{5/2}+\frac {2}{9} x \sqrt {1-\frac {1}{a^2 x^2}} (c-a c x)^{7/2} \]

[Out]

128/105*c^2*x*(-a*c*x+c)^(3/2)*(1-1/a^2/x^2)^(1/2)+32/63*c*x*(-a*c*x+c)^(5/2)*(1-1/a^2/x^2)^(1/2)+2/9*x*(-a*c*
x+c)^(7/2)*(1-1/a^2/x^2)^(1/2)+4096/315*c^4*x*(1-1/a^2/x^2)^(1/2)/(-a*c*x+c)^(1/2)+1024/315*c^3*x*(1-1/a^2/x^2
)^(1/2)*(-a*c*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.22, antiderivative size = 254, normalized size of antiderivative = 1.58, number of steps used = 7, number of rules used = 6, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {6176, 6181, 94, 89, 78, 37} \[ -\frac {256 \sqrt {\frac {1}{a x}+1} (c-a c x)^{7/2}}{45 a^3 x^2 \left (1-\frac {1}{a x}\right )^{7/2}}+\frac {5504 \sqrt {\frac {1}{a x}+1} (c-a c x)^{7/2}}{315 a^4 x^3 \left (1-\frac {1}{a x}\right )^{7/2}}+\frac {2 x \sqrt {\frac {1}{a x}+1} \left (a-\frac {1}{x}\right )^4 (c-a c x)^{7/2}}{9 a^4 \left (1-\frac {1}{a x}\right )^{7/2}}-\frac {32 \sqrt {\frac {1}{a x}+1} \left (a-\frac {1}{x}\right )^3 (c-a c x)^{7/2}}{63 a^4 \left (1-\frac {1}{a x}\right )^{7/2}}+\frac {128 \sqrt {\frac {1}{a x}+1} (c-a c x)^{7/2}}{105 a^2 x \left (1-\frac {1}{a x}\right )^{7/2}} \]

Warning: Unable to verify antiderivative.

[In]

Int[(c - a*c*x)^(7/2)/E^ArcCoth[a*x],x]

[Out]

(-32*(a - x^(-1))^3*Sqrt[1 + 1/(a*x)]*(c - a*c*x)^(7/2))/(63*a^4*(1 - 1/(a*x))^(7/2)) + (5504*Sqrt[1 + 1/(a*x)
]*(c - a*c*x)^(7/2))/(315*a^4*(1 - 1/(a*x))^(7/2)*x^3) - (256*Sqrt[1 + 1/(a*x)]*(c - a*c*x)^(7/2))/(45*a^3*(1
- 1/(a*x))^(7/2)*x^2) + (128*Sqrt[1 + 1/(a*x)]*(c - a*c*x)^(7/2))/(105*a^2*(1 - 1/(a*x))^(7/2)*x) + (2*(a - x^
(-1))^4*Sqrt[1 + 1/(a*x)]*x*(c - a*c*x)^(7/2))/(9*a^4*(1 - 1/(a*x))^(7/2))

Rule 37

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n +
1))/((b*c - a*d)*(m + 1)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + 2, 0] && NeQ
[m, -1]

Rule 78

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> -Simp[((b*e - a*f
)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(f*(p + 1)*(c*f - d*e)), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1)
+ c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f,
 n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ
[p, n]))))

Rule 89

Int[((a_.) + (b_.)*(x_))^2*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((b*c - a*
d)^2*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d^2*(d*e - c*f)*(n + 1)), x] - Dist[1/(d^2*(d*e - c*f)*(n + 1)), In
t[(c + d*x)^(n + 1)*(e + f*x)^p*Simp[a^2*d^2*f*(n + p + 2) + b^2*c*(d*e*(n + 1) + c*f*(p + 1)) - 2*a*b*d*(d*e*
(n + 1) + c*f*(p + 1)) - b^2*d*(d*e - c*f)*(n + 1)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && (LtQ
[n, -1] || (EqQ[n + p + 3, 0] && NeQ[n, -1] && (SumSimplerQ[n, 1] ||  !SumSimplerQ[p, 1])))

Rule 94

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/((m + 1)*(b*e - a*f)), x] - Dist[(n*(d*e - c*f))/((m + 1)*(b*e - a*
f)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[
m + n + p + 2, 0] && GtQ[n, 0] &&  !(SumSimplerQ[p, 1] &&  !SumSimplerQ[m, 1])

Rule 6176

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_), x_Symbol] :> Dist[(c + d*x)^p/(x^p*(1 + c/(d
*x))^p), Int[u*x^p*(1 + c/(d*x))^p*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^
2, 0] &&  !IntegerQ[n/2] &&  !IntegerQ[p]

Rule 6181

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_))^(p_.)*(x_)^(m_), x_Symbol] :> -Dist[c^p*x^m*(1/x)^m, Sub
st[Int[((1 + (d*x)/c)^p*(1 + x/a)^(n/2))/(x^(m + 2)*(1 - x/a)^(n/2)), x], x, 1/x], x] /; FreeQ[{a, c, d, m, n,
 p}, x] && EqQ[c^2 - a^2*d^2, 0] &&  !IntegerQ[n/2] && (IntegerQ[p] || GtQ[c, 0]) &&  !IntegerQ[m]

Rubi steps

\begin {align*} \int e^{-\coth ^{-1}(a x)} (c-a c x)^{7/2} \, dx &=\frac {(c-a c x)^{7/2} \int e^{-\coth ^{-1}(a x)} \left (1-\frac {1}{a x}\right )^{7/2} x^{7/2} \, dx}{\left (1-\frac {1}{a x}\right )^{7/2} x^{7/2}}\\ &=-\frac {\left (\left (\frac {1}{x}\right )^{7/2} (c-a c x)^{7/2}\right ) \operatorname {Subst}\left (\int \frac {\left (1-\frac {x}{a}\right )^4}{x^{11/2} \sqrt {1+\frac {x}{a}}} \, dx,x,\frac {1}{x}\right )}{\left (1-\frac {1}{a x}\right )^{7/2}}\\ &=\frac {2 \left (a-\frac {1}{x}\right )^4 \sqrt {1+\frac {1}{a x}} x (c-a c x)^{7/2}}{9 a^4 \left (1-\frac {1}{a x}\right )^{7/2}}+\frac {\left (16 \left (\frac {1}{x}\right )^{7/2} (c-a c x)^{7/2}\right ) \operatorname {Subst}\left (\int \frac {\left (1-\frac {x}{a}\right )^3}{x^{9/2} \sqrt {1+\frac {x}{a}}} \, dx,x,\frac {1}{x}\right )}{9 a \left (1-\frac {1}{a x}\right )^{7/2}}\\ &=-\frac {32 \left (a-\frac {1}{x}\right )^3 \sqrt {1+\frac {1}{a x}} (c-a c x)^{7/2}}{63 a^4 \left (1-\frac {1}{a x}\right )^{7/2}}+\frac {2 \left (a-\frac {1}{x}\right )^4 \sqrt {1+\frac {1}{a x}} x (c-a c x)^{7/2}}{9 a^4 \left (1-\frac {1}{a x}\right )^{7/2}}-\frac {\left (64 \left (\frac {1}{x}\right )^{7/2} (c-a c x)^{7/2}\right ) \operatorname {Subst}\left (\int \frac {\left (1-\frac {x}{a}\right )^2}{x^{7/2} \sqrt {1+\frac {x}{a}}} \, dx,x,\frac {1}{x}\right )}{21 a^2 \left (1-\frac {1}{a x}\right )^{7/2}}\\ &=-\frac {32 \left (a-\frac {1}{x}\right )^3 \sqrt {1+\frac {1}{a x}} (c-a c x)^{7/2}}{63 a^4 \left (1-\frac {1}{a x}\right )^{7/2}}+\frac {128 \sqrt {1+\frac {1}{a x}} (c-a c x)^{7/2}}{105 a^2 \left (1-\frac {1}{a x}\right )^{7/2} x}+\frac {2 \left (a-\frac {1}{x}\right )^4 \sqrt {1+\frac {1}{a x}} x (c-a c x)^{7/2}}{9 a^4 \left (1-\frac {1}{a x}\right )^{7/2}}-\frac {\left (128 \left (\frac {1}{x}\right )^{7/2} (c-a c x)^{7/2}\right ) \operatorname {Subst}\left (\int \frac {-\frac {7}{a}+\frac {5 x}{2 a^2}}{x^{5/2} \sqrt {1+\frac {x}{a}}} \, dx,x,\frac {1}{x}\right )}{105 a^2 \left (1-\frac {1}{a x}\right )^{7/2}}\\ &=-\frac {32 \left (a-\frac {1}{x}\right )^3 \sqrt {1+\frac {1}{a x}} (c-a c x)^{7/2}}{63 a^4 \left (1-\frac {1}{a x}\right )^{7/2}}-\frac {256 \sqrt {1+\frac {1}{a x}} (c-a c x)^{7/2}}{45 a^3 \left (1-\frac {1}{a x}\right )^{7/2} x^2}+\frac {128 \sqrt {1+\frac {1}{a x}} (c-a c x)^{7/2}}{105 a^2 \left (1-\frac {1}{a x}\right )^{7/2} x}+\frac {2 \left (a-\frac {1}{x}\right )^4 \sqrt {1+\frac {1}{a x}} x (c-a c x)^{7/2}}{9 a^4 \left (1-\frac {1}{a x}\right )^{7/2}}-\frac {\left (2752 \left (\frac {1}{x}\right )^{7/2} (c-a c x)^{7/2}\right ) \operatorname {Subst}\left (\int \frac {1}{x^{3/2} \sqrt {1+\frac {x}{a}}} \, dx,x,\frac {1}{x}\right )}{315 a^4 \left (1-\frac {1}{a x}\right )^{7/2}}\\ &=-\frac {32 \left (a-\frac {1}{x}\right )^3 \sqrt {1+\frac {1}{a x}} (c-a c x)^{7/2}}{63 a^4 \left (1-\frac {1}{a x}\right )^{7/2}}+\frac {5504 \sqrt {1+\frac {1}{a x}} (c-a c x)^{7/2}}{315 a^4 \left (1-\frac {1}{a x}\right )^{7/2} x^3}-\frac {256 \sqrt {1+\frac {1}{a x}} (c-a c x)^{7/2}}{45 a^3 \left (1-\frac {1}{a x}\right )^{7/2} x^2}+\frac {128 \sqrt {1+\frac {1}{a x}} (c-a c x)^{7/2}}{105 a^2 \left (1-\frac {1}{a x}\right )^{7/2} x}+\frac {2 \left (a-\frac {1}{x}\right )^4 \sqrt {1+\frac {1}{a x}} x (c-a c x)^{7/2}}{9 a^4 \left (1-\frac {1}{a x}\right )^{7/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 78, normalized size = 0.48 \[ -\frac {2 c^3 \sqrt {\frac {1}{a x}+1} \left (35 a^4 x^4-220 a^3 x^3+642 a^2 x^2-1276 a x+2867\right ) \sqrt {c-a c x}}{315 a \sqrt {1-\frac {1}{a x}}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(c - a*c*x)^(7/2)/E^ArcCoth[a*x],x]

[Out]

(-2*c^3*Sqrt[1 + 1/(a*x)]*Sqrt[c - a*c*x]*(2867 - 1276*a*x + 642*a^2*x^2 - 220*a^3*x^3 + 35*a^4*x^4))/(315*a*S
qrt[1 - 1/(a*x)])

________________________________________________________________________________________

fricas [A]  time = 0.59, size = 94, normalized size = 0.58 \[ -\frac {2 \, {\left (35 \, a^{5} c^{3} x^{5} - 185 \, a^{4} c^{3} x^{4} + 422 \, a^{3} c^{3} x^{3} - 634 \, a^{2} c^{3} x^{2} + 1591 \, a c^{3} x + 2867 \, c^{3}\right )} \sqrt {-a c x + c} \sqrt {\frac {a x - 1}{a x + 1}}}{315 \, {\left (a^{2} x - a\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*c*x+c)^(7/2)*((a*x-1)/(a*x+1))^(1/2),x, algorithm="fricas")

[Out]

-2/315*(35*a^5*c^3*x^5 - 185*a^4*c^3*x^4 + 422*a^3*c^3*x^3 - 634*a^2*c^3*x^2 + 1591*a*c^3*x + 2867*c^3)*sqrt(-
a*c*x + c)*sqrt((a*x - 1)/(a*x + 1))/(a^2*x - a)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*c*x+c)^(7/2)*((a*x-1)/(a*x+1))^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Warn
ing, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Check [ab
s(a*x+1)]sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

maple [A]  time = 0.04, size = 72, normalized size = 0.45 \[ \frac {2 \left (a x +1\right ) \left (35 x^{4} a^{4}-220 x^{3} a^{3}+642 a^{2} x^{2}-1276 a x +2867\right ) \left (-a c x +c \right )^{\frac {7}{2}} \sqrt {\frac {a x -1}{a x +1}}}{315 a \left (a x -1\right )^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-a*c*x+c)^(7/2)*((a*x-1)/(a*x+1))^(1/2),x)

[Out]

2/315*(a*x+1)*(35*a^4*x^4-220*a^3*x^3+642*a^2*x^2-1276*a*x+2867)*(-a*c*x+c)^(7/2)*((a*x-1)/(a*x+1))^(1/2)/a/(a
*x-1)^4

________________________________________________________________________________________

maxima [A]  time = 0.34, size = 112, normalized size = 0.70 \[ -\frac {2 \, {\left (35 \, a^{5} \sqrt {-c} c^{3} x^{5} - 185 \, a^{4} \sqrt {-c} c^{3} x^{4} + 422 \, a^{3} \sqrt {-c} c^{3} x^{3} - 634 \, a^{2} \sqrt {-c} c^{3} x^{2} + 1591 \, a \sqrt {-c} c^{3} x + 2867 \, \sqrt {-c} c^{3}\right )} {\left (a x - 1\right )}}{315 \, {\left (a^{2} x - a\right )} \sqrt {a x + 1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*c*x+c)^(7/2)*((a*x-1)/(a*x+1))^(1/2),x, algorithm="maxima")

[Out]

-2/315*(35*a^5*sqrt(-c)*c^3*x^5 - 185*a^4*sqrt(-c)*c^3*x^4 + 422*a^3*sqrt(-c)*c^3*x^3 - 634*a^2*sqrt(-c)*c^3*x
^2 + 1591*a*sqrt(-c)*c^3*x + 2867*sqrt(-c)*c^3)*(a*x - 1)/((a^2*x - a)*sqrt(a*x + 1))

________________________________________________________________________________________

mupad [B]  time = 1.36, size = 102, normalized size = 0.63 \[ -\frac {2\,c^3\,\sqrt {c-a\,c\,x}\,\sqrt {\frac {a\,x-1}{a\,x+1}}\,\left (35\,a^4\,x^4-150\,a^3\,x^3+272\,a^2\,x^2-362\,a\,x+1229\right )}{315\,a}-\frac {8192\,c^3\,\sqrt {c-a\,c\,x}\,\sqrt {\frac {a\,x-1}{a\,x+1}}}{315\,a\,\left (a\,x-1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c - a*c*x)^(7/2)*((a*x - 1)/(a*x + 1))^(1/2),x)

[Out]

- (2*c^3*(c - a*c*x)^(1/2)*((a*x - 1)/(a*x + 1))^(1/2)*(272*a^2*x^2 - 362*a*x - 150*a^3*x^3 + 35*a^4*x^4 + 122
9))/(315*a) - (8192*c^3*(c - a*c*x)^(1/2)*((a*x - 1)/(a*x + 1))^(1/2))/(315*a*(a*x - 1))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*c*x+c)**(7/2)*((a*x-1)/(a*x+1))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________