3.231 \(\int \frac {e^{\coth ^{-1}(a x)}}{\sqrt {c-a c x}} \, dx\)

Optimal. Leaf size=118 \[ \frac {2 x \sqrt {1-\frac {1}{a x}} \sqrt {\frac {1}{a x}+1}}{\sqrt {c-a c x}}-\frac {2 \sqrt {2} \sqrt {1-\frac {1}{a x}} \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {\frac {1}{x}}}{\sqrt {a} \sqrt {\frac {1}{a x}+1}}\right )}{\sqrt {a} \sqrt {\frac {1}{x}} \sqrt {c-a c x}} \]

[Out]

2*x*(1-1/a/x)^(1/2)*(1+1/a/x)^(1/2)/(-a*c*x+c)^(1/2)-2*arctanh(2^(1/2)*(1/x)^(1/2)/a^(1/2)/(1+1/a/x)^(1/2))*2^
(1/2)*(1-1/a/x)^(1/2)/a^(1/2)/(1/x)^(1/2)/(-a*c*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.17, antiderivative size = 118, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.278, Rules used = {6176, 6181, 94, 93, 206} \[ \frac {2 x \sqrt {1-\frac {1}{a x}} \sqrt {\frac {1}{a x}+1}}{\sqrt {c-a c x}}-\frac {2 \sqrt {2} \sqrt {1-\frac {1}{a x}} \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {\frac {1}{x}}}{\sqrt {a} \sqrt {\frac {1}{a x}+1}}\right )}{\sqrt {a} \sqrt {\frac {1}{x}} \sqrt {c-a c x}} \]

Antiderivative was successfully verified.

[In]

Int[E^ArcCoth[a*x]/Sqrt[c - a*c*x],x]

[Out]

(2*Sqrt[1 - 1/(a*x)]*Sqrt[1 + 1/(a*x)]*x)/Sqrt[c - a*c*x] - (2*Sqrt[2]*Sqrt[1 - 1/(a*x)]*ArcTanh[(Sqrt[2]*Sqrt
[x^(-1)])/(Sqrt[a]*Sqrt[1 + 1/(a*x)])])/(Sqrt[a]*Sqrt[x^(-1)]*Sqrt[c - a*c*x])

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 94

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/((m + 1)*(b*e - a*f)), x] - Dist[(n*(d*e - c*f))/((m + 1)*(b*e - a*
f)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[
m + n + p + 2, 0] && GtQ[n, 0] &&  !(SumSimplerQ[p, 1] &&  !SumSimplerQ[m, 1])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 6176

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_), x_Symbol] :> Dist[(c + d*x)^p/(x^p*(1 + c/(d
*x))^p), Int[u*x^p*(1 + c/(d*x))^p*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^
2, 0] &&  !IntegerQ[n/2] &&  !IntegerQ[p]

Rule 6181

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_))^(p_.)*(x_)^(m_), x_Symbol] :> -Dist[c^p*x^m*(1/x)^m, Sub
st[Int[((1 + (d*x)/c)^p*(1 + x/a)^(n/2))/(x^(m + 2)*(1 - x/a)^(n/2)), x], x, 1/x], x] /; FreeQ[{a, c, d, m, n,
 p}, x] && EqQ[c^2 - a^2*d^2, 0] &&  !IntegerQ[n/2] && (IntegerQ[p] || GtQ[c, 0]) &&  !IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {e^{\coth ^{-1}(a x)}}{\sqrt {c-a c x}} \, dx &=\frac {\left (\sqrt {1-\frac {1}{a x}} \sqrt {x}\right ) \int \frac {e^{\coth ^{-1}(a x)}}{\sqrt {1-\frac {1}{a x}} \sqrt {x}} \, dx}{\sqrt {c-a c x}}\\ &=-\frac {\sqrt {1-\frac {1}{a x}} \operatorname {Subst}\left (\int \frac {\sqrt {1+\frac {x}{a}}}{x^{3/2} \left (1-\frac {x}{a}\right )} \, dx,x,\frac {1}{x}\right )}{\sqrt {\frac {1}{x}} \sqrt {c-a c x}}\\ &=\frac {2 \sqrt {1-\frac {1}{a x}} \sqrt {1+\frac {1}{a x}} x}{\sqrt {c-a c x}}-\frac {\left (2 \sqrt {1-\frac {1}{a x}}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {x} \left (1-\frac {x}{a}\right ) \sqrt {1+\frac {x}{a}}} \, dx,x,\frac {1}{x}\right )}{a \sqrt {\frac {1}{x}} \sqrt {c-a c x}}\\ &=\frac {2 \sqrt {1-\frac {1}{a x}} \sqrt {1+\frac {1}{a x}} x}{\sqrt {c-a c x}}-\frac {\left (4 \sqrt {1-\frac {1}{a x}}\right ) \operatorname {Subst}\left (\int \frac {1}{1-\frac {2 x^2}{a}} \, dx,x,\frac {\sqrt {\frac {1}{x}}}{\sqrt {1+\frac {1}{a x}}}\right )}{a \sqrt {\frac {1}{x}} \sqrt {c-a c x}}\\ &=\frac {2 \sqrt {1-\frac {1}{a x}} \sqrt {1+\frac {1}{a x}} x}{\sqrt {c-a c x}}-\frac {2 \sqrt {2} \sqrt {1-\frac {1}{a x}} \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {\frac {1}{x}}}{\sqrt {a} \sqrt {1+\frac {1}{a x}}}\right )}{\sqrt {a} \sqrt {\frac {1}{x}} \sqrt {c-a c x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.07, size = 99, normalized size = 0.84 \[ \frac {2 x \sqrt {1-\frac {1}{a x}} \left (\sqrt {a} \sqrt {\frac {1}{a x}+1}-\sqrt {2} \sqrt {\frac {1}{x}} \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {\frac {1}{x}}}{\sqrt {a} \sqrt {\frac {1}{a x}+1}}\right )\right )}{\sqrt {a} \sqrt {c-a c x}} \]

Antiderivative was successfully verified.

[In]

Integrate[E^ArcCoth[a*x]/Sqrt[c - a*c*x],x]

[Out]

(2*Sqrt[1 - 1/(a*x)]*x*(Sqrt[a]*Sqrt[1 + 1/(a*x)] - Sqrt[2]*Sqrt[x^(-1)]*ArcTanh[(Sqrt[2]*Sqrt[x^(-1)])/(Sqrt[
a]*Sqrt[1 + 1/(a*x)])]))/(Sqrt[a]*Sqrt[c - a*c*x])

________________________________________________________________________________________

fricas [A]  time = 0.52, size = 239, normalized size = 2.03 \[ \left [\frac {\sqrt {2} {\left (a c x - c\right )} \sqrt {-\frac {1}{c}} \log \left (-\frac {a^{2} x^{2} - 2 \, \sqrt {2} \sqrt {-a c x + c} {\left (a x + 1\right )} \sqrt {\frac {a x - 1}{a x + 1}} \sqrt {-\frac {1}{c}} + 2 \, a x - 3}{a^{2} x^{2} - 2 \, a x + 1}\right ) - 2 \, \sqrt {-a c x + c} {\left (a x + 1\right )} \sqrt {\frac {a x - 1}{a x + 1}}}{a^{2} c x - a c}, -\frac {2 \, {\left (\sqrt {-a c x + c} {\left (a x + 1\right )} \sqrt {\frac {a x - 1}{a x + 1}} - \frac {\sqrt {2} {\left (a c x - c\right )} \arctan \left (\frac {\sqrt {2} \sqrt {-a c x + c} \sqrt {\frac {a x - 1}{a x + 1}}}{{\left (a x - 1\right )} \sqrt {c}}\right )}{\sqrt {c}}\right )}}{a^{2} c x - a c}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)/(-a*c*x+c)^(1/2),x, algorithm="fricas")

[Out]

[(sqrt(2)*(a*c*x - c)*sqrt(-1/c)*log(-(a^2*x^2 - 2*sqrt(2)*sqrt(-a*c*x + c)*(a*x + 1)*sqrt((a*x - 1)/(a*x + 1)
)*sqrt(-1/c) + 2*a*x - 3)/(a^2*x^2 - 2*a*x + 1)) - 2*sqrt(-a*c*x + c)*(a*x + 1)*sqrt((a*x - 1)/(a*x + 1)))/(a^
2*c*x - a*c), -2*(sqrt(-a*c*x + c)*(a*x + 1)*sqrt((a*x - 1)/(a*x + 1)) - sqrt(2)*(a*c*x - c)*arctan(sqrt(2)*sq
rt(-a*c*x + c)*sqrt((a*x - 1)/(a*x + 1))/((a*x - 1)*sqrt(c)))/sqrt(c))/(a^2*c*x - a*c)]

________________________________________________________________________________________

giac [C]  time = 0.15, size = 91, normalized size = 0.77 \[ \frac {2 \, {\left (\frac {\sqrt {2} \sqrt {c} \arctan \left (\frac {\sqrt {2} \sqrt {-a c x - c}}{2 \, \sqrt {c}}\right ) - \sqrt {-a c x - c}}{\mathrm {sgn}\left (-a c x - c\right )} - \frac {-i \, \sqrt {2} \sqrt {-c} \arctan \left (-i\right ) + \sqrt {2} \sqrt {-c}}{\mathrm {sgn}\relax (c)}\right )}}{a c} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)/(-a*c*x+c)^(1/2),x, algorithm="giac")

[Out]

2*((sqrt(2)*sqrt(c)*arctan(1/2*sqrt(2)*sqrt(-a*c*x - c)/sqrt(c)) - sqrt(-a*c*x - c))/sgn(-a*c*x - c) - (-I*sqr
t(2)*sqrt(-c)*arctan(-I) + sqrt(2)*sqrt(-c))/sgn(c))/(a*c)

________________________________________________________________________________________

maple [A]  time = 0.06, size = 82, normalized size = 0.69 \[ -\frac {2 \sqrt {-c \left (a x -1\right )}\, \left (\sqrt {-c \left (a x +1\right )}-\sqrt {c}\, \sqrt {2}\, \arctan \left (\frac {\sqrt {-c \left (a x +1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right )\right )}{\sqrt {\frac {a x -1}{a x +1}}\, \sqrt {-c \left (a x +1\right )}\, c a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a*x-1)/(a*x+1))^(1/2)/(-a*c*x+c)^(1/2),x)

[Out]

-2*(-c*(a*x-1))^(1/2)*((-c*(a*x+1))^(1/2)-c^(1/2)*2^(1/2)*arctan(1/2*(-c*(a*x+1))^(1/2)*2^(1/2)/c^(1/2)))/((a*
x-1)/(a*x+1))^(1/2)/(-c*(a*x+1))^(1/2)/c/a

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {-a c x + c} \sqrt {\frac {a x - 1}{a x + 1}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)/(-a*c*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(-a*c*x + c)*sqrt((a*x - 1)/(a*x + 1))), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{\sqrt {c-a\,c\,x}\,\sqrt {\frac {a\,x-1}{a\,x+1}}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((c - a*c*x)^(1/2)*((a*x - 1)/(a*x + 1))^(1/2)),x)

[Out]

int(1/((c - a*c*x)^(1/2)*((a*x - 1)/(a*x + 1))^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {\frac {a x - 1}{a x + 1}} \sqrt {- c \left (a x - 1\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))**(1/2)/(-a*c*x+c)**(1/2),x)

[Out]

Integral(1/(sqrt((a*x - 1)/(a*x + 1))*sqrt(-c*(a*x - 1))), x)

________________________________________________________________________________________