3.209 \(\int e^{-2 \coth ^{-1}(a x)} (c-a c x)^2 \, dx\)

Optimal. Leaf size=55 \[ -\frac {c^2 (1-a x)^3}{3 a}-\frac {c^2 (1-a x)^2}{a}-\frac {8 c^2 \log (a x+1)}{a}+4 c^2 x \]

[Out]

4*c^2*x-c^2*(-a*x+1)^2/a-1/3*c^2*(-a*x+1)^3/a-8*c^2*ln(a*x+1)/a

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 55, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {6167, 6129, 43} \[ -\frac {c^2 (1-a x)^3}{3 a}-\frac {c^2 (1-a x)^2}{a}-\frac {8 c^2 \log (a x+1)}{a}+4 c^2 x \]

Antiderivative was successfully verified.

[In]

Int[(c - a*c*x)^2/E^(2*ArcCoth[a*x]),x]

[Out]

4*c^2*x - (c^2*(1 - a*x)^2)/a - (c^2*(1 - a*x)^3)/(3*a) - (8*c^2*Log[1 + a*x])/a

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 6129

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Dist[c^p, Int[(u*(1 + (d*x)/c)
^p*(1 + a*x)^(n/2))/(1 - a*x)^(n/2), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^2, 0] && (IntegerQ
[p] || GtQ[c, 0])

Rule 6167

Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(u_.), x_Symbol] :> Dist[(-1)^(n/2), Int[u*E^(n*ArcTanh[a*x]), x], x] /; Free
Q[a, x] && IntegerQ[n/2]

Rubi steps

\begin {align*} \int e^{-2 \coth ^{-1}(a x)} (c-a c x)^2 \, dx &=-\int e^{-2 \tanh ^{-1}(a x)} (c-a c x)^2 \, dx\\ &=-\left (c^2 \int \frac {(1-a x)^3}{1+a x} \, dx\right )\\ &=-\left (c^2 \int \left (-4-2 (1-a x)-(1-a x)^2+\frac {8}{1+a x}\right ) \, dx\right )\\ &=4 c^2 x-\frac {c^2 (1-a x)^2}{a}-\frac {c^2 (1-a x)^3}{3 a}-\frac {8 c^2 \log (1+a x)}{a}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 39, normalized size = 0.71 \[ \frac {c^2 \left (a^3 x^3-6 a^2 x^2+21 a x-24 \log (a x+1)-4\right )}{3 a} \]

Antiderivative was successfully verified.

[In]

Integrate[(c - a*c*x)^2/E^(2*ArcCoth[a*x]),x]

[Out]

(c^2*(-4 + 21*a*x - 6*a^2*x^2 + a^3*x^3 - 24*Log[1 + a*x]))/(3*a)

________________________________________________________________________________________

fricas [A]  time = 0.64, size = 45, normalized size = 0.82 \[ \frac {a^{3} c^{2} x^{3} - 6 \, a^{2} c^{2} x^{2} + 21 \, a c^{2} x - 24 \, c^{2} \log \left (a x + 1\right )}{3 \, a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*c*x+c)^2*(a*x-1)/(a*x+1),x, algorithm="fricas")

[Out]

1/3*(a^3*c^2*x^3 - 6*a^2*c^2*x^2 + 21*a*c^2*x - 24*c^2*log(a*x + 1))/a

________________________________________________________________________________________

giac [A]  time = 0.13, size = 52, normalized size = 0.95 \[ -\frac {8 \, c^{2} \log \left ({\left | a x + 1 \right |}\right )}{a} + \frac {a^{5} c^{2} x^{3} - 6 \, a^{4} c^{2} x^{2} + 21 \, a^{3} c^{2} x}{3 \, a^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*c*x+c)^2*(a*x-1)/(a*x+1),x, algorithm="giac")

[Out]

-8*c^2*log(abs(a*x + 1))/a + 1/3*(a^5*c^2*x^3 - 6*a^4*c^2*x^2 + 21*a^3*c^2*x)/a^3

________________________________________________________________________________________

maple [A]  time = 0.04, size = 42, normalized size = 0.76 \[ \frac {a^{2} c^{2} x^{3}}{3}-2 c^{2} x^{2} a +7 c^{2} x -\frac {8 c^{2} \ln \left (a x +1\right )}{a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-a*c*x+c)^2/(a*x+1)*(a*x-1),x)

[Out]

1/3*a^2*c^2*x^3-2*c^2*x^2*a+7*c^2*x-8*c^2*ln(a*x+1)/a

________________________________________________________________________________________

maxima [A]  time = 0.30, size = 41, normalized size = 0.75 \[ \frac {1}{3} \, a^{2} c^{2} x^{3} - 2 \, a c^{2} x^{2} + 7 \, c^{2} x - \frac {8 \, c^{2} \log \left (a x + 1\right )}{a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*c*x+c)^2*(a*x-1)/(a*x+1),x, algorithm="maxima")

[Out]

1/3*a^2*c^2*x^3 - 2*a*c^2*x^2 + 7*c^2*x - 8*c^2*log(a*x + 1)/a

________________________________________________________________________________________

mupad [B]  time = 0.04, size = 41, normalized size = 0.75 \[ 7\,c^2\,x-2\,a\,c^2\,x^2+\frac {a^2\,c^2\,x^3}{3}-\frac {8\,c^2\,\ln \left (a\,x+1\right )}{a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((c - a*c*x)^2*(a*x - 1))/(a*x + 1),x)

[Out]

7*c^2*x - 2*a*c^2*x^2 + (a^2*c^2*x^3)/3 - (8*c^2*log(a*x + 1))/a

________________________________________________________________________________________

sympy [A]  time = 0.12, size = 41, normalized size = 0.75 \[ \frac {a^{2} c^{2} x^{3}}{3} - 2 a c^{2} x^{2} + 7 c^{2} x - \frac {8 c^{2} \log {\left (a x + 1 \right )}}{a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*c*x+c)**2*(a*x-1)/(a*x+1),x)

[Out]

a**2*c**2*x**3/3 - 2*a*c**2*x**2 + 7*c**2*x - 8*c**2*log(a*x + 1)/a

________________________________________________________________________________________