3.162 \(\int \frac {e^{\coth ^{-1}(a x)}}{c-a c x} \, dx\)

Optimal. Leaf size=51 \[ \frac {2 \left (a+\frac {1}{x}\right )}{a^2 c \sqrt {1-\frac {1}{a^2 x^2}}}-\frac {\tanh ^{-1}\left (\sqrt {1-\frac {1}{a^2 x^2}}\right )}{a c} \]

[Out]

-arctanh((1-1/a^2/x^2)^(1/2))/a/c+2*(a+1/x)/a^2/c/(1-1/a^2/x^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.21, antiderivative size = 51, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.438, Rules used = {6175, 6178, 852, 1805, 266, 63, 208} \[ \frac {2 \left (a+\frac {1}{x}\right )}{a^2 c \sqrt {1-\frac {1}{a^2 x^2}}}-\frac {\tanh ^{-1}\left (\sqrt {1-\frac {1}{a^2 x^2}}\right )}{a c} \]

Antiderivative was successfully verified.

[In]

Int[E^ArcCoth[a*x]/(c - a*c*x),x]

[Out]

(2*(a + x^(-1)))/(a^2*c*Sqrt[1 - 1/(a^2*x^2)]) - ArcTanh[Sqrt[1 - 1/(a^2*x^2)]]/(a*c)

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 852

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[d^(2*m)/a
^m, Int[((f + g*x)^n*(a + c*x^2)^(m + p))/(d - e*x)^m, x], x] /; FreeQ[{a, c, d, e, f, g, n, p}, x] && NeQ[e*f
 - d*g, 0] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && EqQ[f, 0] && ILtQ[m, -1] &&  !(IGtQ[n, 0] && ILtQ[m +
n, 0] &&  !GtQ[p, 1])

Rule 1805

Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[(c*x)^m*Pq,
 a + b*x^2, x], f = Coeff[PolynomialRemainder[(c*x)^m*Pq, a + b*x^2, x], x, 0], g = Coeff[PolynomialRemainder[
(c*x)^m*Pq, a + b*x^2, x], x, 1]}, Simp[((a*g - b*f*x)*(a + b*x^2)^(p + 1))/(2*a*b*(p + 1)), x] + Dist[1/(2*a*
(p + 1)), Int[(c*x)^m*(a + b*x^2)^(p + 1)*ExpandToSum[(2*a*(p + 1)*Q)/(c*x)^m + (f*(2*p + 3))/(c*x)^m, x], x],
 x]] /; FreeQ[{a, b, c}, x] && PolyQ[Pq, x] && LtQ[p, -1] && ILtQ[m, 0]

Rule 6175

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Dist[d^p, Int[u*x^p*(1 + c/(d*
x))^p*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c^2 - d^2, 0] &&  !IntegerQ[n/2] && Inte
gerQ[p]

Rule 6178

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_))^(p_.)*(x_)^(m_.), x_Symbol] :> -Dist[c^n, Subst[Int[((c
+ d*x)^(p - n)*(1 - x^2/a^2)^(n/2))/x^(m + 2), x], x, 1/x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[c + a*d, 0] &&
 IntegerQ[(n - 1)/2] && IntegerQ[m] && (IntegerQ[p] || EqQ[p, n/2] || EqQ[p, n/2 + 1] || LtQ[-5, m, -1]) && In
tegerQ[2*p]

Rubi steps

\begin {align*} \int \frac {e^{\coth ^{-1}(a x)}}{c-a c x} \, dx &=-\frac {\int \frac {e^{\coth ^{-1}(a x)}}{\left (1-\frac {1}{a x}\right ) x} \, dx}{a c}\\ &=\frac {\operatorname {Subst}\left (\int \frac {\sqrt {1-\frac {x^2}{a^2}}}{x \left (1-\frac {x}{a}\right )^2} \, dx,x,\frac {1}{x}\right )}{a c}\\ &=\frac {\operatorname {Subst}\left (\int \frac {\left (1+\frac {x}{a}\right )^2}{x \left (1-\frac {x^2}{a^2}\right )^{3/2}} \, dx,x,\frac {1}{x}\right )}{a c}\\ &=\frac {2 \left (a+\frac {1}{x}\right )}{a^2 c \sqrt {1-\frac {1}{a^2 x^2}}}+\frac {\operatorname {Subst}\left (\int \frac {1}{x \sqrt {1-\frac {x^2}{a^2}}} \, dx,x,\frac {1}{x}\right )}{a c}\\ &=\frac {2 \left (a+\frac {1}{x}\right )}{a^2 c \sqrt {1-\frac {1}{a^2 x^2}}}+\frac {\operatorname {Subst}\left (\int \frac {1}{x \sqrt {1-\frac {x}{a^2}}} \, dx,x,\frac {1}{x^2}\right )}{2 a c}\\ &=\frac {2 \left (a+\frac {1}{x}\right )}{a^2 c \sqrt {1-\frac {1}{a^2 x^2}}}-\frac {a \operatorname {Subst}\left (\int \frac {1}{a^2-a^2 x^2} \, dx,x,\sqrt {1-\frac {1}{a^2 x^2}}\right )}{c}\\ &=\frac {2 \left (a+\frac {1}{x}\right )}{a^2 c \sqrt {1-\frac {1}{a^2 x^2}}}-\frac {\tanh ^{-1}\left (\sqrt {1-\frac {1}{a^2 x^2}}\right )}{a c}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.06, size = 60, normalized size = 1.18 \[ \frac {2 a x \sqrt {1-\frac {1}{a^2 x^2}}+(1-a x) \log \left (a x \left (\sqrt {1-\frac {1}{a^2 x^2}}+1\right )\right )}{a c (a x-1)} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^ArcCoth[a*x]/(c - a*c*x),x]

[Out]

(2*a*Sqrt[1 - 1/(a^2*x^2)]*x + (1 - a*x)*Log[a*(1 + Sqrt[1 - 1/(a^2*x^2)])*x])/(a*c*(-1 + a*x))

________________________________________________________________________________________

fricas [A]  time = 0.47, size = 87, normalized size = 1.71 \[ -\frac {{\left (a x - 1\right )} \log \left (\sqrt {\frac {a x - 1}{a x + 1}} + 1\right ) - {\left (a x - 1\right )} \log \left (\sqrt {\frac {a x - 1}{a x + 1}} - 1\right ) - 2 \, {\left (a x + 1\right )} \sqrt {\frac {a x - 1}{a x + 1}}}{a^{2} c x - a c} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)/(-a*c*x+c),x, algorithm="fricas")

[Out]

-((a*x - 1)*log(sqrt((a*x - 1)/(a*x + 1)) + 1) - (a*x - 1)*log(sqrt((a*x - 1)/(a*x + 1)) - 1) - 2*(a*x + 1)*sq
rt((a*x - 1)/(a*x + 1)))/(a^2*c*x - a*c)

________________________________________________________________________________________

giac [A]  time = 0.18, size = 79, normalized size = 1.55 \[ -a {\left (\frac {\log \left (\sqrt {\frac {a x - 1}{a x + 1}} + 1\right )}{a^{2} c} - \frac {\log \left ({\left | \sqrt {\frac {a x - 1}{a x + 1}} - 1 \right |}\right )}{a^{2} c} - \frac {2}{a^{2} c \sqrt {\frac {a x - 1}{a x + 1}}}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)/(-a*c*x+c),x, algorithm="giac")

[Out]

-a*(log(sqrt((a*x - 1)/(a*x + 1)) + 1)/(a^2*c) - log(abs(sqrt((a*x - 1)/(a*x + 1)) - 1))/(a^2*c) - 2/(a^2*c*sq
rt((a*x - 1)/(a*x + 1))))

________________________________________________________________________________________

maple [B]  time = 0.05, size = 249, normalized size = 4.88 \[ \frac {-\sqrt {\left (a x -1\right ) \left (a x +1\right )}\, \sqrt {a^{2}}\, x^{2} a^{2}-\ln \left (\frac {a^{2} x +\sqrt {\left (a x -1\right ) \left (a x +1\right )}\, \sqrt {a^{2}}}{\sqrt {a^{2}}}\right ) x^{2} a^{3}+\left (\left (a x -1\right ) \left (a x +1\right )\right )^{\frac {3}{2}} \sqrt {a^{2}}+2 \sqrt {\left (a x -1\right ) \left (a x +1\right )}\, \sqrt {a^{2}}\, x a +2 \ln \left (\frac {a^{2} x +\sqrt {\left (a x -1\right ) \left (a x +1\right )}\, \sqrt {a^{2}}}{\sqrt {a^{2}}}\right ) x \,a^{2}-\sqrt {\left (a x -1\right ) \left (a x +1\right )}\, \sqrt {a^{2}}-a \ln \left (\frac {a^{2} x +\sqrt {\left (a x -1\right ) \left (a x +1\right )}\, \sqrt {a^{2}}}{\sqrt {a^{2}}}\right )}{a \sqrt {a^{2}}\, \left (a x -1\right ) c \sqrt {\left (a x -1\right ) \left (a x +1\right )}\, \sqrt {\frac {a x -1}{a x +1}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a*x-1)/(a*x+1))^(1/2)/(-a*c*x+c),x)

[Out]

1/a*(-((a*x-1)*(a*x+1))^(1/2)*(a^2)^(1/2)*x^2*a^2-ln((a^2*x+((a*x-1)*(a*x+1))^(1/2)*(a^2)^(1/2))/(a^2)^(1/2))*
x^2*a^3+((a*x-1)*(a*x+1))^(3/2)*(a^2)^(1/2)+2*((a*x-1)*(a*x+1))^(1/2)*(a^2)^(1/2)*x*a+2*ln((a^2*x+((a*x-1)*(a*
x+1))^(1/2)*(a^2)^(1/2))/(a^2)^(1/2))*x*a^2-((a*x-1)*(a*x+1))^(1/2)*(a^2)^(1/2)-a*ln((a^2*x+((a*x-1)*(a*x+1))^
(1/2)*(a^2)^(1/2))/(a^2)^(1/2)))/(a^2)^(1/2)/(a*x-1)/c/((a*x-1)*(a*x+1))^(1/2)/((a*x-1)/(a*x+1))^(1/2)

________________________________________________________________________________________

maxima [A]  time = 0.30, size = 78, normalized size = 1.53 \[ -a {\left (\frac {\log \left (\sqrt {\frac {a x - 1}{a x + 1}} + 1\right )}{a^{2} c} - \frac {\log \left (\sqrt {\frac {a x - 1}{a x + 1}} - 1\right )}{a^{2} c} - \frac {2}{a^{2} c \sqrt {\frac {a x - 1}{a x + 1}}}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)/(-a*c*x+c),x, algorithm="maxima")

[Out]

-a*(log(sqrt((a*x - 1)/(a*x + 1)) + 1)/(a^2*c) - log(sqrt((a*x - 1)/(a*x + 1)) - 1)/(a^2*c) - 2/(a^2*c*sqrt((a
*x - 1)/(a*x + 1))))

________________________________________________________________________________________

mupad [B]  time = 0.07, size = 48, normalized size = 0.94 \[ \frac {2}{a\,c\,\sqrt {\frac {a\,x-1}{a\,x+1}}}-\frac {2\,\mathrm {atanh}\left (\sqrt {\frac {a\,x-1}{a\,x+1}}\right )}{a\,c} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((c - a*c*x)*((a*x - 1)/(a*x + 1))^(1/2)),x)

[Out]

2/(a*c*((a*x - 1)/(a*x + 1))^(1/2)) - (2*atanh(((a*x - 1)/(a*x + 1))^(1/2)))/(a*c)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ - \frac {\int \frac {1}{a x \sqrt {\frac {a x}{a x + 1} - \frac {1}{a x + 1}} - \sqrt {\frac {a x}{a x + 1} - \frac {1}{a x + 1}}}\, dx}{c} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))**(1/2)/(-a*c*x+c),x)

[Out]

-Integral(1/(a*x*sqrt(a*x/(a*x + 1) - 1/(a*x + 1)) - sqrt(a*x/(a*x + 1) - 1/(a*x + 1))), x)/c

________________________________________________________________________________________