3.155 \(\int \frac {e^{n \coth ^{-1}(a x)}}{x^4} \, dx\)

Optimal. Leaf size=167 \[ \frac {a^3 2^{n/2} \left (n^2+2\right ) \left (1-\frac {1}{a x}\right )^{1-\frac {n}{2}} \, _2F_1\left (1-\frac {n}{2},-\frac {n}{2};2-\frac {n}{2};\frac {a-\frac {1}{x}}{2 a}\right )}{3 (2-n)}+\frac {1}{6} a^3 n \left (\frac {1}{a x}+1\right )^{\frac {n+2}{2}} \left (1-\frac {1}{a x}\right )^{1-\frac {n}{2}}+\frac {a^2 \left (\frac {1}{a x}+1\right )^{\frac {n+2}{2}} \left (1-\frac {1}{a x}\right )^{1-\frac {n}{2}}}{3 x} \]

[Out]

1/6*a^3*n*(1-1/a/x)^(1-1/2*n)*(1+1/a/x)^(1+1/2*n)+1/3*a^2*(1-1/a/x)^(1-1/2*n)*(1+1/a/x)^(1+1/2*n)/x+1/3*2^(1/2
*n)*a^3*(n^2+2)*(1-1/a/x)^(1-1/2*n)*hypergeom([-1/2*n, 1-1/2*n],[2-1/2*n],1/2*(a-1/x)/a)/(2-n)

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 167, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {6171, 90, 80, 69} \[ \frac {a^3 2^{n/2} \left (n^2+2\right ) \left (1-\frac {1}{a x}\right )^{1-\frac {n}{2}} \, _2F_1\left (1-\frac {n}{2},-\frac {n}{2};2-\frac {n}{2};\frac {a-\frac {1}{x}}{2 a}\right )}{3 (2-n)}+\frac {1}{6} a^3 n \left (\frac {1}{a x}+1\right )^{\frac {n+2}{2}} \left (1-\frac {1}{a x}\right )^{1-\frac {n}{2}}+\frac {a^2 \left (\frac {1}{a x}+1\right )^{\frac {n+2}{2}} \left (1-\frac {1}{a x}\right )^{1-\frac {n}{2}}}{3 x} \]

Antiderivative was successfully verified.

[In]

Int[E^(n*ArcCoth[a*x])/x^4,x]

[Out]

(a^3*n*(1 - 1/(a*x))^(1 - n/2)*(1 + 1/(a*x))^((2 + n)/2))/6 + (a^2*(1 - 1/(a*x))^(1 - n/2)*(1 + 1/(a*x))^((2 +
 n)/2))/(3*x) + (2^(n/2)*a^3*(2 + n^2)*(1 - 1/(a*x))^(1 - n/2)*Hypergeometric2F1[1 - n/2, -n/2, 2 - n/2, (a -
x^(-1))/(2*a)])/(3*(2 - n))

Rule 69

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*Hypergeometric2F1[
-n, m + 1, m + 2, -((d*(a + b*x))/(b*c - a*d))])/(b*(m + 1)*(b/(b*c - a*d))^n), x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] ||  !(Ra
tionalQ[n] && GtQ[-(d/(b*c - a*d)), 0]))

Rule 80

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 90

Int[((a_.) + (b_.)*(x_))^2*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a + b*
x)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 3)), x] + Dist[1/(d*f*(n + p + 3)), Int[(c + d*x)^n*(e +
 f*x)^p*Simp[a^2*d*f*(n + p + 3) - b*(b*c*e + a*(d*e*(n + 1) + c*f*(p + 1))) + b*(a*d*f*(n + p + 4) - b*(d*e*(
n + 2) + c*f*(p + 2)))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 3, 0]

Rule 6171

Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(x_)^(m_.), x_Symbol] :> -Subst[Int[(1 + x/a)^(n/2)/(x^(m + 2)*(1 - x/a)^(n/2
)), x], x, 1/x] /; FreeQ[{a, n}, x] &&  !IntegerQ[n] && IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {e^{n \coth ^{-1}(a x)}}{x^4} \, dx &=-\operatorname {Subst}\left (\int x^2 \left (1-\frac {x}{a}\right )^{-n/2} \left (1+\frac {x}{a}\right )^{n/2} \, dx,x,\frac {1}{x}\right )\\ &=\frac {a^2 \left (1-\frac {1}{a x}\right )^{1-\frac {n}{2}} \left (1+\frac {1}{a x}\right )^{\frac {2+n}{2}}}{3 x}+\frac {1}{3} a^2 \operatorname {Subst}\left (\int \left (1-\frac {x}{a}\right )^{-n/2} \left (1+\frac {x}{a}\right )^{n/2} \left (-1-\frac {n x}{a}\right ) \, dx,x,\frac {1}{x}\right )\\ &=\frac {1}{6} a^3 n \left (1-\frac {1}{a x}\right )^{1-\frac {n}{2}} \left (1+\frac {1}{a x}\right )^{\frac {2+n}{2}}+\frac {a^2 \left (1-\frac {1}{a x}\right )^{1-\frac {n}{2}} \left (1+\frac {1}{a x}\right )^{\frac {2+n}{2}}}{3 x}-\frac {1}{6} \left (a^2 \left (2+n^2\right )\right ) \operatorname {Subst}\left (\int \left (1-\frac {x}{a}\right )^{-n/2} \left (1+\frac {x}{a}\right )^{n/2} \, dx,x,\frac {1}{x}\right )\\ &=\frac {1}{6} a^3 n \left (1-\frac {1}{a x}\right )^{1-\frac {n}{2}} \left (1+\frac {1}{a x}\right )^{\frac {2+n}{2}}+\frac {a^2 \left (1-\frac {1}{a x}\right )^{1-\frac {n}{2}} \left (1+\frac {1}{a x}\right )^{\frac {2+n}{2}}}{3 x}+\frac {2^{n/2} a^3 \left (2+n^2\right ) \left (1-\frac {1}{a x}\right )^{1-\frac {n}{2}} \, _2F_1\left (1-\frac {n}{2},-\frac {n}{2};2-\frac {n}{2};\frac {a-\frac {1}{x}}{2 a}\right )}{3 (2-n)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.67, size = 132, normalized size = 0.79 \[ -\frac {a^3 e^{n \coth ^{-1}(a x)} \left ((n+2) \left (-\left (1-\frac {1}{a^2 x^2}\right ) \left (\frac {2}{a x}+n\right )+\left (n^2+2\right ) \, _2F_1\left (1,\frac {n}{2};\frac {n}{2}+1;-e^{2 \coth ^{-1}(a x)}\right )+\frac {n^2+2}{a x}\right )-n \left (n^2+2\right ) e^{2 \coth ^{-1}(a x)} \, _2F_1\left (1,\frac {n}{2}+1;\frac {n}{2}+2;-e^{2 \coth ^{-1}(a x)}\right )\right )}{6 (n+2)} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^(n*ArcCoth[a*x])/x^4,x]

[Out]

-1/6*(a^3*E^(n*ArcCoth[a*x])*(-(E^(2*ArcCoth[a*x])*n*(2 + n^2)*Hypergeometric2F1[1, 1 + n/2, 2 + n/2, -E^(2*Ar
cCoth[a*x])]) + (2 + n)*(-((1 - 1/(a^2*x^2))*(n + 2/(a*x))) + (2 + n^2)/(a*x) + (2 + n^2)*Hypergeometric2F1[1,
 n/2, 1 + n/2, -E^(2*ArcCoth[a*x])])))/(2 + n)

________________________________________________________________________________________

fricas [F]  time = 0.60, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{2} \, n}}{x^{4}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arccoth(a*x))/x^4,x, algorithm="fricas")

[Out]

integral(((a*x - 1)/(a*x + 1))^(1/2*n)/x^4, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{2} \, n}}{x^{4}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arccoth(a*x))/x^4,x, algorithm="giac")

[Out]

integrate(((a*x - 1)/(a*x + 1))^(1/2*n)/x^4, x)

________________________________________________________________________________________

maple [F]  time = 0.06, size = 0, normalized size = 0.00 \[ \int \frac {{\mathrm e}^{n \,\mathrm {arccoth}\left (a x \right )}}{x^{4}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(n*arccoth(a*x))/x^4,x)

[Out]

int(exp(n*arccoth(a*x))/x^4,x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{2} \, n}}{x^{4}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arccoth(a*x))/x^4,x, algorithm="maxima")

[Out]

integrate(((a*x - 1)/(a*x + 1))^(1/2*n)/x^4, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\mathrm {e}}^{n\,\mathrm {acoth}\left (a\,x\right )}}{x^4} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(n*acoth(a*x))/x^4,x)

[Out]

int(exp(n*acoth(a*x))/x^4, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {e^{n \operatorname {acoth}{\left (a x \right )}}}{x^{4}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*acoth(a*x))/x**4,x)

[Out]

Integral(exp(n*acoth(a*x))/x**4, x)

________________________________________________________________________________________